Collaborative Proposal: ITR-SemDIS: Discovering Complex Relationships in the Semantic Web
合作提案:ITR-SemDIS:发现语义网中的复杂关系
基本信息
- 批准号:0325464
- 负责人:
- 金额:$ 80万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-10-15 至 2007-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Research in search techniques was a critical component of the first generation of the Web, and has gone from academe to mainstream. A second generation "Semantic Web" is being built by adding semantic annotations that machines can understand and from which humans can benefit. Modeling, discovering and reasoning about complex relationships on the Semantic Web will enable this vision and transform the hunt for documents into a more automated analysis enabled by semantic technology. The beginnings of this shift from search to analysis can be observed in research and industry as users look beyond finding relevant documents based on keywords to finding actionable information leading to decision making and insights. Large scale semantic annotation of data (both domain-independent and domain-specific) is now possible because of an accumulation of advances in entity identification, automatic classification, taxonomy and ontology development, and metadata extraction. The next frontier, which fundamentally changes the way we acquire and use knowledge, is to automatically identify complex relationships between entities in this semantically annotated data. Instead of a search engine that returns documents containing terms of interest, there will be a system that returns actionable information (with the associated sources and supporting evidence) to a user or application. The user interacts with information universe through a hypothesis driven approach that combines search and inferencing, enabling more complex analysis and deeper insight. The research will focus on the design, prototyping and evaluation of a system, called SemDIS (Semantic Discovery) that supports indexing and querying of complex semantic relationships and is driven by notions of information trust and provenance and models of hypotheses and arguments under investigation. Such a capability greatly enhances the capacity of intelligence analysts to obtain (in time) information leading to a more secure homeland and world. Corresponding to the breadth and depth of the topics involved in the challenge undertaken, this is a collaborative project involving researchers at UGA's LSDIS lab and UMBC. SemDIS will have broader impacts beyond the education and training of graduate students, and the publication of research findings. Results from the research will be integrated with courses, both existing and new. Institutional mechanisms in place will seek participation of students from underrepresented groups. The work will also gain from several academic-industry collaborations of the investigators. There will be an opportunity to leverage commercial infrastructure and raw metadata provided by Semagix. The researchers will collaborate with industry, and the students will be encouraged to intern at collaborating industrial labs. Within a broader social context, emerging knowledge-centric technologies raise legitimate privacy and civil liberties concerns. Building upon past policy making experience, the investigators will comment on potential implications of their scientific progress. More information can be found at http://http://lsdis.cs.uga.edu/SemDIS/ and at http://www.cs.umbc.edu/SemDIS/
对搜索技术的研究是第一代网络的关键组成部分,并已从学术界进入主流。第二代“语义网”正在通过添加机器可以理解、人类可以从中受益的语义注释来构建。对语义网上的复杂关系进行建模、发现和推理将使这一愿景成为可能,并将搜索文档转变为由语义技术实现的更自动化的分析。这种从搜索到分析的转变的开始可以在研究和行业中观察到,因为用户的目光从基于关键字的相关文档转向寻找可操作的信息,从而做出决策和洞察。由于在实体识别、自动分类、分类和本体开发以及元数据提取方面的进展积累,现在可以对数据进行大规模语义注释(独立于领域和特定于领域)。从根本上改变我们获取和使用知识的方式的下一个前沿是自动识别这些语义注释数据中的实体之间的复杂关系。将有一个向用户或应用程序返回可操作信息(以及相关来源和支持证据)的系统,而不是返回包含感兴趣术语的文档的搜索引擎。用户通过假设驱动的方法与信息宇宙交互,该方法结合了搜索和推理,使用户能够进行更复杂的分析和更深入的洞察。该研究将集中于一个名为SemDIS(语义发现)的系统的设计、原型和评估,该系统支持复杂语义关系的索引和查询,并由信息信任和来源概念以及正在调查的假设和论点模型驱动。这种能力极大地提高了情报分析员获取(及时)信息的能力,从而使国土和世界更加安全。与挑战中涉及的主题的广度和深度相对应,这是一个由UGA的LSDIS实验室和UMBC的研究人员参与的合作项目。SEMDIS将在研究生的教育和培训以及研究成果的出版方面产生更广泛的影响。研究结果将与现有的和新的课程相结合。现有的体制机制将寻求来自代表性不足群体的学生的参与。这项工作还将从调查人员的几次学术和行业合作中受益。将有机会利用Semagix提供的商业基础设施和原始元数据。研究人员将与产业界合作,并鼓励学生在合作的工业实验室实习。在更广泛的社会背景下,新兴的以知识为中心的技术引发了对合法隐私和公民自由的担忧。根据过去的政策制定经验,研究人员将就他们的科学进步的潜在影响发表评论。欲了解更多信息,请访问http://http://lsdis.cs.uga.edu/SemDIS/和http://www.cs.umbc.edu/SemDIS/。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Amit Sheth其他文献
Grounding From an AI and Cognitive Science Lens
从人工智能和认知科学的角度出发
- DOI:
10.1109/mis.2024.3366669 - 发表时间:
2024 - 期刊:
- 影响因子:6.4
- 作者:
Goonmeet Bajaj;V. Shalin;Srinivasan Parthasarathy;Amit Sheth;Amit Sheth - 通讯作者:
Amit Sheth
Causal Event Graph-Guided Language-based Spatiotemporal Question Answering
因果事件图引导的基于语言的时空问答
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Kaushik Roy;Alessandro Oltramari;Yuxin Zi;Chathurangi Shyalika;Vignesh Narayanan;Amit Sheth - 通讯作者:
Amit Sheth
Cognitive manufacturing: definition and current trends
- DOI:
10.1007/s10845-024-02429-9 - 发表时间:
2024-06-20 - 期刊:
- 影响因子:7.400
- 作者:
Fadi El Kalach;Ibrahim Yousif;Thorsten Wuest;Amit Sheth;Ramy Harik - 通讯作者:
Ramy Harik
Ki-Cook: Clustering Multimodal Cooking Representations Through Ki-Cook: Clustering Multimodal Cooking Representations Through Knowledge-infused Learning Knowledge-infused Learning
Ki-Cook:通过知识注入学习对多模态烹饪表示进行聚类 Ki-Cook:通过知识注入学习对多模态烹饪表示进行聚类 知识注入学习
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Thommen Karimpanal George;R. Venkataramanan;Swati Padhee;Saini Rohan;Rao Ronak;Anirudh Kaoshik 4;Sundara Rajan;Amit Sheth - 通讯作者:
Amit Sheth
RDR: the Recap, Deliberate, and Respond Method for Enhanced Language Understanding
RDR:增强语言理解的回顾、深思熟虑和回应方法
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Yuxin Zi;Hariram Veeramani;Kaushik Roy;Amit Sheth - 通讯作者:
Amit Sheth
Amit Sheth的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Amit Sheth', 18)}}的其他基金
EAGER: Knowledge-guided neurosymbolic AI with guardrails for safe virtual health assistants
EAGER:知识引导的神经符号人工智能,带有安全虚拟健康助手的护栏
- 批准号:
2335967 - 财政年份:2023
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
EAGER: Advancing Neuro-symbolic AI with Deep Knowledge-infused Learning
EAGER:通过深度知识注入学习推进神经符号人工智能
- 批准号:
2133842 - 财政年份:2021
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
NSF Convergence Accelerator: Symposium on Big Data and AI-Driven Disaster Management for Planning, Response, Recovery, and Resiliency
NSF 融合加速器:大数据和人工智能驱动的灾害管理规划、响应、恢复和复原力研讨会
- 批准号:
1956285 - 财政年份:2020
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
TWC SBE: Medium: Context-Aware Harassment Detection on Social Media
TWC SBE:媒介:社交媒体上的情境感知骚扰检测
- 批准号:
2013801 - 财政年份:2019
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
Spokes: MEDIUM: MIDWEST: Collaborative: Community-Driven Data Engineering for Substance Abuse Prevention in the Rural Midwest
辐条:媒介:中西部:协作:社区驱动的数据工程,用于中西部农村地区的药物滥用预防
- 批准号:
1956009 - 财政年份:2019
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
Spokes: MEDIUM: MIDWEST: Collaborative: Community-Driven Data Engineering for Substance Abuse Prevention in the Rural Midwest
辐条:媒介:中西部:协作:社区驱动的数据工程,用于中西部农村地区的药物滥用预防
- 批准号:
1761931 - 财政年份:2018
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
III: Travel Fellowships for Students from U.S. Universities to Attend ISWC 2016
三:美国大学学生参加 ISWC 2016 的旅费奖学金
- 批准号:
1622628 - 财政年份:2016
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
PFI:AIR - TT: Market Driven Innovations and Scaling up of Twitris- A System for Collective Social Intelligence
PFI:AIR - TT:市场驱动的创新和 Twitris 的扩展——集体社交智能系统
- 批准号:
1542911 - 财政年份:2015
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
TWC SBE: Medium: Context-Aware Harassment Detection on Social Media
TWC SBE:媒介:社交媒体上的情境感知骚扰检测
- 批准号:
1513721 - 财政年份:2015
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
I-Corps: Towards Commercialization of Twitris- a system for collective intelligence
I-Corps:迈向 Twitris 的商业化——集体智慧系统
- 批准号:
1343041 - 财政年份:2013
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Proposal: ITR-SemDIS: Discovering Complex Relationships in the Semantic Web
合作提案:ITR-SemDIS:发现语义网中的复杂关系
- 批准号:
0714441 - 财政年份:2007
- 资助金额:
$ 80万 - 项目类别:
Continuing Grant
ITR Collaborative Proposal: Building Biologically Based Immune System Simulations for Education and Training
ITR 合作提案:为教育和培训构建基于生物学的免疫系统模拟
- 批准号:
0427827 - 财政年份:2004
- 资助金额:
$ 80万 - 项目类别:
Continuing Grant
ITR Collaborative Proposal: Aurora - Enabling Stream-Based Monitoring Applications
ITR 协作提案:Aurora - 启用基于流的监控应用程序
- 批准号:
0325703 - 财政年份:2003
- 资助金额:
$ 80万 - 项目类别:
Continuing Grant
ITR Collaborative Proposal: Aurora - Enabling Stream-Based Monitoring Applications
ITR 协作提案:Aurora - 启用基于流的监控应用程序
- 批准号:
0325838 - 财政年份:2003
- 资助金额:
$ 80万 - 项目类别:
Continuing Grant
ITR Collaborative Proposal: Aurora - Enabling Stream-Based Monitoring Applications
ITR 协作提案:Aurora - 启用基于流的监控应用程序
- 批准号:
0325525 - 财政年份:2003
- 资助金额:
$ 80万 - 项目类别:
Continuing Grant
Collaborative Proposal: ITR-SemDIS: Discovering Complex Relationships in the Semantic Web
合作提案:ITR-SemDIS:发现语义网中的复杂关系
- 批准号:
0325172 - 财政年份:2003
- 资助金额:
$ 80万 - 项目类别:
Continuing Grant
Collaborative Proposal: ITR/AP: Modular Ocean Data Assimilation
合作提案:ITR/AP:模块化海洋数据同化
- 批准号:
0121506 - 财政年份:2002
- 资助金额:
$ 80万 - 项目类别:
Continuing Grant
ITR Collaborative Proposal: Subgroup Fault Lines in Distributed International Teams: The Impact on Cross-National Learning and Team Effectiveness
ITR 协作提案:分布式国际团队中的子群体断层线:对跨国学习和团队效率的影响
- 批准号:
0219754 - 财政年份:2002
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
ITR/AP(Geo): Collaborative Proposal for First Generation Model and Data Assimilation System to Reduce Volcanic Hazards
ITR/AP(Geo):减少火山灾害的第一代模型和数据同化系统的合作提案
- 批准号:
0112694 - 财政年份:2001
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
Collaborative Proposal-ITR/SY: Molecular Computation with Automated Microfluidic Sensors (MCAMS)
合作提案-ITR/SY:使用自动微流控传感器(MCAMS)进行分子计算
- 批准号:
0121405 - 财政年份:2001
- 资助金额:
$ 80万 - 项目类别:
Continuing Grant