Optical: Nanoengineering of InAs Quantum Dot Medium for High Speed Vertical Cavity Lasers

光学:用于高速垂直腔激光器的 InAs 量子点介质的纳米工程

基本信息

  • 批准号:
    0334994
  • 负责人:
  • 金额:
    $ 25.49万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2003
  • 资助国家:
    美国
  • 起止时间:
    2003-12-01 至 2006-11-30
  • 项目状态:
    已结题

项目摘要

0334994OktyabrskyHigh-frequency directly modulated Vertical Cavity Surface Emitting Lasers (VCSELs) and dense VCSEL arrays are expected to change the whole paradigm of short-range interconnections. Substitution of electrons with photons is expected to dramatically increase bandwidth and reduce power of interconnects ranging from silicon IC I/O's to module- and board-level. Quantum Dots (QDs) due to their discrete electronic spectrum have fundamental advantages over quantum wells that could benefit performance characteristics of laser diodes. The proposal addresses nanoengineering of both homogeneous and inhomogeneous electronic spectra of quantum dots to achieve the performance of the gain medium suitable for utilization in high-speed VCSELs for short range (down to off-chip I/O) optical interconnects. The major target performance characteristics of the device include direct modulation bandwidth 40 GHz, low-power operation of a few mW, and operation temperatures up to 100 0C, necessary for direct integration with a Si chip. The approach involves: (i) development of MBE-related nanoengineering methods to control size, density, shape, and ultimately electronic spectrum and transient phenomena in self-assembled InAs multilayer QDs; to provide minimum size dispersion of the QDs; give the means for shape engineering to increase wave function overlap integral and accelerate the relaxation dynamics to the lasing state; reduce evaporation of carriers from the dots. (ii) Band-structure engineering and implementation of high speed VCSEL structure for QD medium to increase microcavity Q-factor; reduce relaxation time onto the QD ground (lasing) states via application of resonant tunnel junction for direct injection into the QD ground state; reduce series resistance and parasitic capacitance. The work plan includes theoretical analysis and simulation of the QD laser heterostructures; development of QD active medium with high gain and fast capture and relaxation times using control of growth kinetics, band-structure and shape engineering, and doping; testing of the gain medium in edge-emitting laser diodes; design and implementation of VCSELs with tunnel injection heterojunctions; systematic characterization and testing of the QD structures and test devices using in-situ RHEED, and ex-situ SEM, SPM, FIB-cross sectioning, analytical TEM, photoluminescence, electrical DC and microwave methods.
高频直接调制垂直腔面发射激光器(VCSEL)和密集VCSEL阵列有望改变短程互连的整个范式。用光子取代电子有望大幅增加带宽,并降低从硅IC I/O到模块级和板级互连的功耗。量子点(QD)由于其离散的电子光谱而具有优于量子威尔斯的基本优点,这可以有益于激光二极管的性能特性。该提案解决了量子点的均匀和非均匀电子光谱的纳米工程,以实现适合用于短程(下至片外I/O)光学互连的高速VCSEL的增益介质的性能。该器件的主要目标性能特性包括直接调制带宽40 GHz,低功耗工作几mW,工作温度高达100 ℃,与Si芯片直接集成所必需的。该办法包括:(i)发展与分子束外延有关的纳米工程方法,以控制自组装InAs多层量子点的尺寸、密度、形状,以及最终的电子光谱和瞬态现象;提供量子点的最小尺寸分散;提供形状工程的方法,以增加波函数重叠积分和加速弛豫动力学到激光状态;减少载流子从量子点蒸发。 (ii)量子点介质的带结构工程和高速VCSEL结构的实现,以增加微腔Q因子;通过应用谐振隧道结直接注入量子点基态,减少量子点基态(激光)的弛豫时间;减少串联电阻和寄生电容。工作计划包括量子点激光器异质结构的理论分析和模拟;通过控制生长动力学、能带结构和形状工程以及掺杂,开发具有高增益和快速捕获和弛豫时间的量子点有源介质;测试边发射激光二极管中的增益介质;设计和实现具有隧道注入异质结的VCSEL;使用原位RHEED和非原位SEM、SPM、FIB横截面、分析TEM、光致发光、直流电和微波方法对QD结构和测试器件进行系统表征和测试。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Serge Oktyabrsky其他文献

Preparation of gallium nitride surfaces for atomic layer deposition of aluminum oxide.
用于氧化铝原子层沉积的氮化镓表面的制备。
  • DOI:
    10.1063/1.4894541
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. J. Kerr;E. Chagarov;S. Gu;T. Kaufman;S. Madisetti;J. Wu;Peter M. Asbeck;Serge Oktyabrsky;A. Kummel
  • 通讯作者:
    A. Kummel
ETB-QW InAs MOSFET with scaled body for improved electrostatics
ETB-QW InAs MOSFET,具有可改善静电的缩放体
  • DOI:
    10.1109/iedm.2012.6479151
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tae;Dae;D. Koh;Richard Hill;Rinus T. P. Lee;Man Hoi Wong;T. Cunningham;J. A. D. Alamo;Sanjay K. Banerjee;Serge Oktyabrsky;M. GreeneAndrew;Y. Ohsawa;Y. Trickett;G. Nakamura;Qiang Li;Kei May Lau;Chris Hobbs;Paul Kirsch;R. Jammy
  • 通讯作者:
    R. Jammy
Device response principles and the impact on energy resolution of epitaxial quantum dot scintillators with monolithic photodetector integration
器件响应原理以及单片光电探测器集成的外延量子点闪烁体对能量分辨率的影响
  • DOI:
    10.1038/s41598-024-74160-7
  • 发表时间:
    2024-10-02
  • 期刊:
  • 影响因子:
    3.900
  • 作者:
    Allan Minns;Tushar Mahajan;Vadim Tokranov;Michael Yakimov;Michael Hedges;Pavel Murat;Serge Oktyabrsky
  • 通讯作者:
    Serge Oktyabrsky

Serge Oktyabrsky的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Serge Oktyabrsky', 18)}}的其他基金

Waveguiding Nanomaterials: A Path Towards Ultrafast Scintillation Detectors
波导纳米材料:通向超快闪烁探测器的道路
  • 批准号:
    1708637
  • 财政年份:
    2017
  • 资助金额:
    $ 25.49万
  • 项目类别:
    Standard Grant
III-Sb Interfaces with High-k Oxides: Science and Technology of Novel MOSFET Gate Stack
III-Sb 与高 k 氧化物的界面:新型 MOSFET 栅极堆栈的科学与技术
  • 批准号:
    1006253
  • 财政年份:
    2010
  • 资助金额:
    $ 25.49万
  • 项目类别:
    Continuing Grant
Optically decoupled dual-cavity VCSEL-modulator high-speed light source
光解耦双腔 VCSEL 调制器高速光源
  • 批准号:
    0725523
  • 财政年份:
    2007
  • 资助金额:
    $ 25.49万
  • 项目类别:
    Standard Grant
NER: Engineering of InAs Quantum Dot Ensembles Using Interference of Optical Surface Waves
NER:利用光学表面波干涉进行 InAs 量子点系综工程
  • 批准号:
    0210279
  • 财政年份:
    2002
  • 资助金额:
    $ 25.49万
  • 项目类别:
    Standard Grant

相似海外基金

RET site: A Year-Long NanoEngineering Exploration from the Lab to the Classroom
RET现场:从实验室到课堂长达一年的纳米工程探索
  • 批准号:
    2302127
  • 财政年份:
    2023
  • 资助金额:
    $ 25.49万
  • 项目类别:
    Standard Grant
A nanoengineering platform for programmable gene editing therapies against rare diseases
用于针对罕见疾病的可编程基因编辑疗法的纳米工程平台
  • 批准号:
    10699037
  • 财政年份:
    2023
  • 资助金额:
    $ 25.49万
  • 项目类别:
InspiringFuture - Bioinspired nanoengineering of robust films: Multifunctional interfaces for enabling a sustainable future
InspiringFuture - 坚固薄膜的仿生纳米工程:实现可持续未来的多功能接口
  • 批准号:
    EP/X023974/1
  • 财政年份:
    2023
  • 资助金额:
    $ 25.49万
  • 项目类别:
    Research Grant
REU Site: Ole Miss Nanoengineering Summer REU Program
REU 网站:Ole Miss 纳米工程夏季 REU 项目
  • 批准号:
    2148764
  • 财政年份:
    2022
  • 资助金额:
    $ 25.49万
  • 项目类别:
    Standard Grant
Nanoengineering Quantum Electronic Behaviour
纳米工程量子电子行为
  • 批准号:
    572632-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 25.49万
  • 项目类别:
    University Undergraduate Student Research Awards
Nanoengineering of Biomaterial Surfaces to Tailor Innate Immune Responses
生物材料表面纳米工程定制先天免疫反应
  • 批准号:
    DP220103543
  • 财政年份:
    2022
  • 资助金额:
    $ 25.49万
  • 项目类别:
    Discovery Projects
Nanoengineering Interfacial and Solid-State Electrochemical Redox Devices via Computational Design and Informatics
通过计算设计和信息学的纳米工程界面和固态电化学氧化还原装置
  • 批准号:
    RGPIN-2019-05411
  • 财政年份:
    2022
  • 资助金额:
    $ 25.49万
  • 项目类别:
    Discovery Grants Program - Individual
Nanoengineering Renal Replacement Therapy
纳米工程肾脏替代疗法
  • 批准号:
    10690367
  • 财政年份:
    2022
  • 资助金额:
    $ 25.49万
  • 项目类别:
Nanoengineering Smart and Precise Antimicrobial Polymers
纳米工程智能精密抗菌聚合物
  • 批准号:
    FT210100150
  • 财政年份:
    2021
  • 资助金额:
    $ 25.49万
  • 项目类别:
    ARC Future Fellowships
Nanoengineering Interfacial and Solid-State Electrochemical Redox Devices via Computational Design and Informatics
通过计算设计和信息学的纳米工程界面和固态电化学氧化还原装置
  • 批准号:
    RGPIN-2019-05411
  • 财政年份:
    2021
  • 资助金额:
    $ 25.49万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了