Topics in Harmonic Analysis for Reductive P-adic Groups
还原 P 进群的调和分析主题
基本信息
- 批准号:0345121
- 负责人:
- 金额:$ 7.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-06-01 至 2007-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractDeBackerThe investigator will work on a number of topics which arise in the study of harmonic analysis for reductive groups over nonarchimedian local fields. The unifying theme for these topics is their relation to homogeneity statements. At their most basic level, homogeneity questions ask: given two distributions, what is the largest set of functions on which the two distributions will agree? The first topic concerns the homogeneity question for invariant distributions supported on the compact elements in the group. This is the last unproven (in general) homogeneity statement, and it has implications for the "fundamental lemma" (which is a conjecture). The second topic concerns questions of stability for distributions supported on the unipotent set. The final topic concerns the meaning of the constants occurring in the Harish-Chandra-Howe local character expansion.The topics discussed above fall under the rubric of harmonic analysis on Lie groups. This area of mathematics, which is solidly rooted in physics, was pioneered by Harish-Chandra beginning some fifty years ago. Since the 1970s, much of the work in this area has been directed toward questions which arise naturally in the Langlands program (which seeks to relate, in a strong sense, number theory, representation theory, and harmonic analysis). For example, Harish-Chandra studied the distributions which arise when one integrates over a conjugacy class. From the perspective of the Langlands program, it is also important to study the distributions which arise when one integrates over certain stable conjugacy classes, that is, classes which become conjugate over an algebraic closure of the ground field. The investigator hopes his program of research will contribute to future progress in this area.
研究者将研究非阿基米德局部域上约化群的谐波分析中出现的一些问题。这些主题的统一主题是它们与同质性陈述的关系。在最基本的层面上,同质性问题问的是:给定两个分布,这两个分布一致的最大函数集是什么?第一个主题是关于群中紧元素支持的不变分布的同质性问题。这是最后一个未经证明的(一般的)同质性陈述,它对“基本引理”(这是一个猜想)有影响。第二个主题涉及在幂偶集上支持的分布的稳定性问题。最后一个主题是关于在Harish-Chandra-Howe局部字符扩展中出现的常量的含义。上面讨论的题目属于李群的调和分析范畴。这个牢牢扎根于物理学的数学领域,是大约50年前由哈里什-钱德拉开创的。自20世纪70年代以来,这一领域的大部分工作都是针对朗兰兹纲领(在强烈的意义上,它试图将数论、表示理论和谐波分析联系起来)中自然产生的问题。例如,Harish-Chandra研究了在共轭类上积分时产生的分布。从朗兰兹纲领的角度来看,研究在某些稳定共轭类上积分时产生的分布也很重要,即在地场的代数闭包上变成共轭的类。研究者希望他的研究计划将有助于这一领域未来的发展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephen DeBacker其他文献
Stephen DeBacker的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stephen DeBacker', 18)}}的其他基金
Midwest Representation Theory Conference 2021/2022
2021/2022 中西部表征理论会议
- 批准号:
2137037 - 财政年份:2022
- 资助金额:
$ 7.56万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Characters, Liftings, and Types: Investigations in p-adic Representation Theory
FRG:协作研究:特征、提升和类型:p-adic 表示理论的调查
- 批准号:
0854897 - 财政年份:2009
- 资助金额:
$ 7.56万 - 项目类别:
Standard Grant
Topics in Harmonic Analysis on Reductive p-adic Groups
约简 p 进群调和分析专题
- 批准号:
0500667 - 财政年份:2005
- 资助金额:
$ 7.56万 - 项目类别:
Standard Grant
Topics in Harmonic Analysis for Reductive P-adic Groups
还原 P 进群的调和分析主题
- 批准号:
0200542 - 财政年份:2002
- 资助金额:
$ 7.56万 - 项目类别:
Continuing Grant
Mathematical Sciences Postdoctoral Research Fellowships
数学科学博士后研究奖学金
- 批准号:
9804375 - 财政年份:1998
- 资助金额:
$ 7.56万 - 项目类别:
Fellowship Award
相似国自然基金
算子方法在Harmonic数恒等式中的应用
- 批准号:11201241
- 批准年份:2012
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
Ricci-Harmonic流的长时间存在性
- 批准号:11126190
- 批准年份:2011
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
相似海外基金
Geometric Harmonic Analysis: Advances in Radon-like Transforms and Related Topics
几何调和分析:类氡变换及相关主题的进展
- 批准号:
2348384 - 财政年份:2024
- 资助金额:
$ 7.56万 - 项目类别:
Standard Grant
Averaging operators and related topics in harmonic analysis
谐波分析中的平均运算符和相关主题
- 批准号:
2348797 - 财政年份:2024
- 资助金额:
$ 7.56万 - 项目类别:
Standard Grant
Collaborative Research: Topics in Abstract, Applied, and Computational Harmonic Analysis
合作研究:抽象、应用和计算谐波分析主题
- 批准号:
2205852 - 财政年份:2022
- 资助金额:
$ 7.56万 - 项目类别:
Standard Grant
Collaborative Research: Topics in Abstract, Applied, and Computational Harmonic Analysis
合作研究:抽象、应用和计算谐波分析主题
- 批准号:
2205771 - 财政年份:2022
- 资助金额:
$ 7.56万 - 项目类别:
Standard Grant
Topics in Harmonic Analysis: Maximal Functions, Singular Integrals, and Multilinear Inequalities
调和分析主题:极大函数、奇异积分和多重线性不等式
- 批准号:
2154835 - 财政年份:2022
- 资助金额:
$ 7.56万 - 项目类别:
Standard Grant
Selected topics in harmonic analysis
谐波分析精选主题
- 批准号:
RGPIN-2017-03752 - 财政年份:2021
- 资助金额:
$ 7.56万 - 项目类别:
Discovery Grants Program - Individual
Selected topics in harmonic analysis
谐波分析精选主题
- 批准号:
RGPIN-2017-03752 - 财政年份:2020
- 资助金额:
$ 7.56万 - 项目类别:
Discovery Grants Program - Individual