Topics in Discrete Harmonic Analysis

离散谐波分析主题

基本信息

  • 批准号:
    2247254
  • 负责人:
  • 金额:
    $ 40.01万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-06-01 至 2026-05-31
  • 项目状态:
    未结题

项目摘要

Averages give basic insights into a wide range of objects, since they aggregate complex data into a single number. They appear, in different forms, in many areas of mathematics. The central topic will be a study of averages over prime numbers as they appear in an important class of generalizations of prime numbers, the abstract number field settings. This infinite class of prime number fields sheds light on the underlying principles that govern prime numbers. It turns out that the commonalities and differences in proofs about these questions in the number field settings give new insights into traditionally evasive questions about prime numbers. These questions include the so-called Goldbach conjectures, patterns that emerge in prime numbers, as well as related and new questions. The research will be conducted in parallel with a training program for a next generation of STEM students, and emerging researchers. For example, continued training of graduate students will take place, and as well lead a program instructing 700 High School students from about 70 High Schools across the state of Georgia in dual enrollment classes such as Linear Algebra and Vector Calculus.A vigorous program of study in discrete harmonic analysis will be carried out. A range of questions in the number field setting promise new insights into even classical questions like the Goldbach conjecture in the number field setting. These insights come about by a delicate analysis of the Fourier transforms of averages over prime numbers, as the most accessible example. So, questions about Goldbach conjecture are then related to the second and third order convolutions of the averages. Further questions about multilinear averages in the number field setting will be pursued. Subject to research will be novel questions concerning averages over surfaces that combine important elements of continuous and discrete elements. This research will complement the continuing study of commutators, with a range of new results about the Schatten norms of the operators under investigation.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Aesthetics提供了对各种对象的基本见解,因为它们将复杂的数据聚合到一个数字中。它们以不同的形式出现在数学的许多领域。中心主题将是一个平均数的研究,因为它们出现在一个重要的类的推广素数,抽象的号码字段设置。这无限类素数域揭示了支配素数的基本原理。事实证明,这些问题在数域设置中证明的共性和差异,为传统上回避的素数问题提供了新的见解。这些问题包括所谓的哥德巴赫定理,出现在素数中的模式,以及相关的和新的问题。这项研究将与下一代STEM学生和新兴研究人员的培训计划同时进行。例如,继续培训研究生,以及引导一个程序,指导来自格鲁吉亚州约70所高中的700名高中生在双招生班,如线性代数和向量微积分。数域设置中的一系列问题有望为经典问题(如数域设置中的哥德巴赫猜想)提供新的见解。这些见解来自于对素数平均值的傅里叶变换的精细分析,作为最容易理解的例子。因此,关于哥德巴赫猜想的问题与平均值的二阶和三阶卷积有关。关于数域设置中的多线性平均值的进一步问题将继续讨论。受研究将是新的问题,平均超过表面,结合联合收割机的重要元素的连续和离散的元素。这项研究将补充正在进行的制冷剂研究,并提供一系列关于被调查运营商的Schatten规范的新结果。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Endpoint $\ell^r$ improving estimates for prime averages
端点 $ell^r$ 改进了素数平均值的估计
  • DOI:
    10.4310/mrl.2022.v29.n6.a6
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Lacey, Michael T.;Mousavi, Hamed;Rahimi, Yaghoub
  • 通讯作者:
    Rahimi, Yaghoub
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Lacey其他文献

Sparse domination of singular integral operators
奇异积分算子的稀疏支配
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yumeng Ou;Alexander Barron;Michael Lacey;T. Luque;Betsy Stovall;Laura Cladek;G. Karagulyan;V. Naibo;Anh Neuman;R. Torres
  • 通讯作者:
    R. Torres
On the discrepancy function in arbitrary dimension, close to L 1
  • DOI:
    10.1007/s10476-008-0203-9
  • 发表时间:
    2008-09-20
  • 期刊:
  • 影响因子:
    0.500
  • 作者:
    Michael Lacey
  • 通讯作者:
    Michael Lacey
Schatten classes and commutators of Riesz transforms in the two weight setting
双权情形下里斯变换的阴影类与交换子
  • DOI:
    10.1016/j.jfa.2025.111028
  • 发表时间:
    2025-09-15
  • 期刊:
  • 影响因子:
    1.600
  • 作者:
    Michael Lacey;Ji Li;Brett D. Wick;Liangchuan Wu
  • 通讯作者:
    Liangchuan Wu
On almost sure noncentral limit theorems
COSTS OF PATIENTS WITH NONVALVULAR ATRIAL FIBRILLATION WHO HAVE BLEEDING EVENTS IN A LARGE MANAGED CARE POPULATION
  • DOI:
    10.1016/s0735-1097(13)61575-2
  • 发表时间:
    2013-03-12
  • 期刊:
  • 影响因子:
  • 作者:
    Steven Deitelzweig;Brett Pinsky;Erin Buysman;Michael Lacey;Yonghua Jing;Daniel Wiederkehr;John Graham
  • 通讯作者:
    John Graham

Michael Lacey的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Lacey', 18)}}的其他基金

Sparse Bounds and Improving Estimates, Continuous and Discrete
稀疏界限和改进估计,连续和离散
  • 批准号:
    1949206
  • 财政年份:
    2020
  • 资助金额:
    $ 40.01万
  • 项目类别:
    Standard Grant
REU Site: Georgia Institute of Technology Mathematics Research Experiences for Undergraduates
REU 网站:佐治亚理工学院本科生数学研究经验
  • 批准号:
    1851843
  • 财政年份:
    2019
  • 资助金额:
    $ 40.01万
  • 项目类别:
    Standard Grant
Discrete Problems in Harmonic Analysis and One Bit Sensing
谐波分析和一位传感中的离散问题
  • 批准号:
    1600693
  • 财政年份:
    2016
  • 资助金额:
    $ 40.01万
  • 项目类别:
    Continuing Grant
Two Weight Inequalities for Singular Integrals
奇异积分的两个权重不等式
  • 批准号:
    1265570
  • 财政年份:
    2013
  • 资助金额:
    $ 40.01万
  • 项目类别:
    Continuing Grant
Problems in Weighted Inequalities, Phase Plane Analysis
加权不等式、相平面分析中的问题
  • 批准号:
    0968499
  • 财政年份:
    2010
  • 资助金额:
    $ 40.01万
  • 项目类别:
    Continuing Grant
Special Meeting: CRM Special Semester on Harmonic analysis, Geometric Measure Theory and Quasiconformal Mappings
特别会议:CRM调和分析、几何测度理论和拟共形映射特别学期
  • 批准号:
    0902259
  • 财政年份:
    2009
  • 资助金额:
    $ 40.01万
  • 项目类别:
    Standard Grant
EMSW21-MCTP: A Georgia Tech Plan for Recruiting and Mentoring Undergraduates in Mathematics
EMSW21-MCTP:佐治亚理工学院数学本科生招募和指导计划
  • 批准号:
    0739343
  • 财政年份:
    2008
  • 资助金额:
    $ 40.01万
  • 项目类别:
    Continuing Grant
Special Meeting: Fields Program on New Trends in Harmonic Analysis - International U.S. Participation
特别会议:谐波分析新趋势领域计划 - 美国国际参与
  • 批准号:
    0648811
  • 财政年份:
    2007
  • 资助金额:
    $ 40.01万
  • 项目类别:
    Standard Grant
Investigations in Harmonic Analysis
谐波分析研究
  • 批准号:
    0456611
  • 财政年份:
    2005
  • 资助金额:
    $ 40.01万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: New Trends in Harmonic Analysis
FRG:协作研究:谐波分析的新趋势
  • 批准号:
    0456538
  • 财政年份:
    2005
  • 资助金额:
    $ 40.01万
  • 项目类别:
    Standard Grant

相似海外基金

Combinatorial geometry in discrete math and harmonic analysis
离散数学和调和分析中的组合几何
  • 批准号:
    RGPIN-2017-03865
  • 财政年份:
    2022
  • 资助金额:
    $ 40.01万
  • 项目类别:
    Discovery Grants Program - Individual
Combinatorial geometry in discrete math and harmonic analysis
离散数学和调和分析中的组合几何
  • 批准号:
    RGPIN-2017-03865
  • 财政年份:
    2021
  • 资助金额:
    $ 40.01万
  • 项目类别:
    Discovery Grants Program - Individual
Combinatorial geometry in discrete math and harmonic analysis
离散数学和调和分析中的组合几何
  • 批准号:
    RGPIN-2017-03865
  • 财政年份:
    2020
  • 资助金额:
    $ 40.01万
  • 项目类别:
    Discovery Grants Program - Individual
Combinatorial geometry in discrete math and harmonic analysis
离散数学和调和分析中的组合几何
  • 批准号:
    RGPIN-2017-03865
  • 财政年份:
    2019
  • 资助金额:
    $ 40.01万
  • 项目类别:
    Discovery Grants Program - Individual
Combinatorial geometry in discrete math and harmonic analysis
离散数学和调和分析中的组合几何
  • 批准号:
    RGPIN-2017-03865
  • 财政年份:
    2018
  • 资助金额:
    $ 40.01万
  • 项目类别:
    Discovery Grants Program - Individual
Combinatorial geometry in discrete math and harmonic analysis
离散数学和调和分析中的组合几何
  • 批准号:
    RGPIN-2017-03865
  • 财政年份:
    2017
  • 资助金额:
    $ 40.01万
  • 项目类别:
    Discovery Grants Program - Individual
Discrete Problems in Harmonic Analysis and One Bit Sensing
谐波分析和一位传感中的离散问题
  • 批准号:
    1600693
  • 财政年份:
    2016
  • 资助金额:
    $ 40.01万
  • 项目类别:
    Continuing Grant
The analysis for the moduli space of Riemann surfaces using the discrete harmonic volume
使用离散调和体积分析黎曼曲面的模空间
  • 批准号:
    25800053
  • 财政年份:
    2013
  • 资助金额:
    $ 40.01万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Discrete problems in harmonic analysis with applications to ergodic theory and additive number theory
调和分析中的离散问题及其在遍历理论和加性数论中的应用
  • 批准号:
    0803190
  • 财政年份:
    2008
  • 资助金额:
    $ 40.01万
  • 项目类别:
    Continuing Grant
Combinatorial harmonic maps and a rigidity of discrete-group actions
组合调和映射和离散群作用的刚性
  • 批准号:
    15540056
  • 财政年份:
    2003
  • 资助金额:
    $ 40.01万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了