Collaborative Research: Bayesian Times Series Models for the Analysis of International Conflict
合作研究:用于分析国际冲突的贝叶斯时间序列模型
基本信息
- 批准号:0351179
- 负责人:
- 金额:$ 19.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-01-01 至 2006-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
International war and conflict threaten the lives and well-being of millions of people. On the basis of theoretical work in international relations, the co-investigators develop multivariate, Bayesian vector autoregression time series models (BVARs) for short and medium term conflict forecasting and for the analysis of counterfactuals of various kinds, more specifically, Markov-switching models of this type (MS-BVARs) for the Balkans, Israeli-Palestinian, and India-Pakistan conflicts. The models will incorporate and test theoretical work on conflict phase shifts as well as the results of research on the impact of elections and democratic transitions on conflict. Scaled events data from two sources (KEDS/TABARI and IDEA) will be used to estimate the model.The models will yield short and medium term, case specific, quantitative predictions of conflict and cooperation; they eventually will incorporate assessments of the welfare consequences of conflict. Finally, by developing priors for the model coefficients and constructing posterior inferences for the models' predictions, for one of the first times in political science, explicit assessments of the impact of model uncertainty on (political) forecasts accuracy will be produced.Intellectual Merit. The proposed has theoretical and practical value. To begin, it will produce statistically sound characterizations of conflict phase sequences. The investigators test formally for the number of phases in the Balkans, Israeli-Palestinian, and Indian-Pakistani conflicts, and also provide numerical estimates of the transition probabilities between these phases (along with measures of the precision of these estimates). They then will produce quantitative, weekly and monthly predictions of the future course of the three conflicts conditional on the realization of specific conflict phases and on the steady state probabilities of the conflict phases for each case. In addition, the fitted MS-BVARs will illuminate similarities and differences in the three conflicts' dynamics. For instance, the fitted models will show if there are common degrees of persistence in them, the extent to which the three conflicts display the same patterns of reciprocity and triangularity, whether the conflicts tend toward the same long-term (fixed) mean levels of conflict, and whether provision for electoral forces and transitions to (from) democracy enhance the predictive power of the MS-BVARs. Impulse response analysis will yield insights into the possible impact of hypothetical, surprise peace initiatives by third parties (conditional on the conflict phase). The methods of conditional forecasting (with the BVARs and MS-BVARs) will be used to analyze counterfactual histories of the conflicts. For example, by inserting counterfactual variables for elections in Pakistan in the late 1990s we will examine of the counterfactual consequences of that country not experiencing a democratic reversal on its conflict with India.Broader impact. The results will be disseminated in several ways. First, a web-site will be constructed. The website will contain the investigators' computer code, data, and examples. It also will contain a tutorial on how to construct and apply BVARs and MS-BVARs for selected international conflicts. Second, the investigators will offer short-courses on how to build and apply MS-BVARs. These courses will be offered at such gatherings as the International Studies Association (ISA) , Peace Science Society (PSS), and American Political Science Association (APSA) meetings. Every effort will be to include "unrepresentative groups" in these short course and training sessions. Scientifically, the project will demonstrate the usefulness of events data in political forecasting, and advance our understanding of Bayesian time series methods in the social sciences. American and global society will benefit from being better able to anticipate international conflict weeks and months ahead and also being able to evaluate counterfactuals of various kinds.
国际战争和冲突威胁着数百万人的生命和福祉。在国际关系理论工作的基础上,共同研究者开发了多变量贝叶斯向量自回归时间序列模型(BVAR),用于短期和中期冲突预测,并用于分析各种反事实,更具体地说,巴尔干半岛,以色列-巴勒斯坦和印度-巴基斯坦冲突的马尔可夫转换模型(MS-BVAR)。这些模型将纳入并检验关于冲突阶段转变的理论工作以及关于选举和民主过渡对冲突的影响的研究结果。从两个来源(KEDS/TABARI和IDEA)的规模事件数据将被用来估计模型。模型将产生短期和中期,具体情况下,冲突与合作的定量预测,他们最终将纳入冲突的福利后果的评估。最后,通过建立模型系数的先验知识和构建模型预测的后验推理,将对模型不确定性对(政治)预测准确性的影响进行明确的评估,这在政治学中尚属首次。本文的研究具有一定的理论意义和实用价值。开始,它将产生冲突相序列的统计上合理的表征。调查人员正式测试了巴尔干半岛、巴以冲突和印巴冲突的阶段数,并提供了这些阶段之间过渡概率的数值估计(沿着这些估计的精确度)。然后,他们将根据具体冲突阶段的实现情况和每种情况下冲突阶段的稳定状态概率,对这三种冲突的未来进程作出定量、每周和每月的预测。此外,拟合的MS-BVAR将阐明三种冲突动态的相似性和差异。例如,拟合模型将显示它们是否存在共同的持续性程度,三种冲突显示相同的互惠和三角模式的程度,冲突是否倾向于相同的长期(固定)平均冲突水平,以及选举力量和向(从)民主过渡的规定是否增强了MS-BVAR的预测能力。脉冲反应分析将使人们深入了解第三方(以冲突阶段为条件)假设的、突然的和平倡议可能产生的影响。条件预测方法(使用BVAR和MS-BVAR)将用于分析冲突的反事实历史。例如,通过插入20世纪90年代末巴基斯坦选举的反事实变量,我们将考察该国在与印度的冲突中没有经历民主逆转的反事实后果。调查结果将以多种方式传播。首先,将建立一个网站。该网站将包含研究人员的计算机代码、数据和示例。它还将包含一个关于如何为选定的国际冲突制定和应用最大价值评估和MS-BVAR的教程。其次,研究人员将提供关于如何建立和应用MS-BVAR的短期课程。这些课程将在国际研究协会(伊萨),和平科学学会(PSS)和美国政治学协会(APSA)会议等聚会上提供。将尽一切努力将“无代表性群体”纳入这些短期课程和培训班。科学上,该项目将展示事件数据在政治预测中的有用性,并促进我们对社会科学中贝叶斯时间序列方法的理解。美国和全球社会将受益于能够更好地预测未来几周和几个月的国际冲突,并能够评估各种反事实。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Freeman其他文献
RevAssist®
- DOI:
10.2165/00002018-200831090-00003 - 发表时间:
2008-01-01 - 期刊:
- 影响因子:3.800
- 作者:
Carmen P. Castaneda;Jerome B. Zeldis;John Freeman;Curtis Quigley;Nancy A. Brandenburg;Robert Bwire - 通讯作者:
Robert Bwire
Physiologic Factors Affecting Defecatory Sensation: Relation to Aging
影响排便感觉的生理因素:与衰老的关系
- DOI:
- 发表时间:
1974 - 期刊:
- 影响因子:6.3
- 作者:
H. F. Newman;John Freeman - 通讯作者:
John Freeman
Acetylenotrophic and Diazotrophic Bradyrhizobium sp. Strain I71 from Trichloroethylene-Contaminated Soils
乙酰营养型和固氮型慢生根瘤菌 sp.
- DOI:
10.3897/aca.6.e109201 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
D. Akob;John Sutton;Timothy Bushman;S. Baesman;Edina Klein;Yesha Shrestha;Robert Andrews;Janna Fierst;Max Kolton;Sara Gushgari;Ronald Oremland;John Freeman - 通讯作者:
John Freeman
Cognitive Behavioral Therapy and Biofeedback
- DOI:
10.1007/s11916-024-01348-x - 发表时间:
2025-01-09 - 期刊:
- 影响因子:3.500
- 作者:
Christopher Wie;Tyler Dunn;Jeannie Sperry;Natalie Strand;Aziza Dawodu;John Freeman;Stephen Covington;Scott Pew;Lopa Misra;Jillian Maloney - 通讯作者:
Jillian Maloney
Adverse Effects Associated With High-Dose Ketamine Infusions For Refractory Pain And Psychiatric Conditions
- DOI:
10.1007/s11916-025-01408-w - 发表时间:
2025-06-19 - 期刊:
- 影响因子:3.500
- 作者:
Elika D. Javaheri;Christopher Wie;Stephen Covington;Lopa Misra;Scott Pew;Omar Viswanath;John Freeman;Jillian Maloney - 通讯作者:
Jillian Maloney
John Freeman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John Freeman', 18)}}的其他基金
SBIR Phase I: Microbiome for improving salt stress tolerance in crops
SBIR 第一阶段:提高作物耐盐胁迫能力的微生物组
- 批准号:
2035899 - 财政年份:2021
- 资助金额:
$ 19.55万 - 项目类别:
Standard Grant
Collaborative Research: Development of a Technology for Real Time Ex Ante Forecasting of Intra and International Conflict and Cooperation
合作研究:开发实时事前预测内部和国际冲突与合作的技术
- 批准号:
0921018 - 财政年份:2009
- 资助金额:
$ 19.55万 - 项目类别:
Standard Grant
Doctoral Dissertation Research: Globalization and Representation in Developed Democracies
博士论文研究:发达民主国家的全球化与代表性
- 批准号:
0241824 - 财政年份:2003
- 资助金额:
$ 19.55万 - 项目类别:
Standard Grant
Coordination for the Geospace Environment Modeling Workshops
地理空间环境建模研讨会的协调
- 批准号:
9731074 - 财政年份:1997
- 资助金额:
$ 19.55万 - 项目类别:
Continuing grant
A Systems Dynamics Approach to Understanding Technical Innovation in the U. S. Semiconductor Industry
理解美国半导体行业技术创新的系统动力学方法
- 批准号:
8218013 - 财政年份:1983
- 资助金额:
$ 19.55万 - 项目类别:
Standard Grant
Collaborative Research on Models of Governmental Dynamics InDependent Societies
独立社会政府动力模型的合作研究
- 批准号:
8105841 - 财政年份:1981
- 资助金额:
$ 19.55万 - 项目类别:
Standard Grant
Collaborative Research on Formal Models of Governmental Dynamics in Dependent Societies
依附社会政府动态正式模型的合作研究
- 批准号:
7907101 - 财政年份:1979
- 资助金额:
$ 19.55万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
- 批准号:
2341238 - 财政年份:2024
- 资助金额:
$ 19.55万 - 项目类别:
Standard Grant
Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
- 批准号:
2341237 - 财政年份:2024
- 资助金额:
$ 19.55万 - 项目类别:
Continuing Grant
Collaborative Research: Bayesian Residual Learning and Random Recursive Partitioning Methods for Gaussian Process Modeling
合作研究:高斯过程建模的贝叶斯残差学习和随机递归划分方法
- 批准号:
2348163 - 财政年份:2023
- 资助金额:
$ 19.55万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Automating CI Configuration Troubleshooting with Bayesian Group Testing
协作研究:EAGER:使用贝叶斯组测试自动化 CI 配置故障排除
- 批准号:
2333326 - 财政年份:2023
- 资助金额:
$ 19.55万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Automating CI Configuration Troubleshooting with Bayesian Group Testing
协作研究:EAGER:使用贝叶斯组测试自动化 CI 配置故障排除
- 批准号:
2333324 - 财政年份:2023
- 资助金额:
$ 19.55万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Automating CI Configuration Troubleshooting with Bayesian Group Testing
协作研究:EAGER:使用贝叶斯组测试自动化 CI 配置故障排除
- 批准号:
2333325 - 财政年份:2023
- 资助金额:
$ 19.55万 - 项目类别:
Standard Grant
Collaborative Research: Novel modeling and Bayesian analysis of high-dimensional time series
合作研究:高维时间序列的新颖建模和贝叶斯分析
- 批准号:
2210282 - 财政年份:2022
- 资助金额:
$ 19.55万 - 项目类别:
Standard Grant
Collaborative Research: Randomization Based Machine Learning Methods in a Bayesian Model Setting for Data From a Complex Survey or Census
协作研究:针对复杂调查或人口普查数据的贝叶斯模型设置中基于随机化的机器学习方法
- 批准号:
2215169 - 财政年份:2022
- 资助金额:
$ 19.55万 - 项目类别:
Standard Grant
Collaborative Research: Randomization Based Machine Learning Methods in a Bayesian Model Setting for Data From a Complex Survey or Census
协作研究:针对复杂调查或人口普查数据的贝叶斯模型设置中基于随机化的机器学习方法
- 批准号:
2215168 - 财政年份:2022
- 资助金额:
$ 19.55万 - 项目类别:
Standard Grant
Collaborative Research: Advancing Bayesian Thinking in STEM
合作研究:推进 STEM 中的贝叶斯思维
- 批准号:
2215920 - 财政年份:2022
- 资助金额:
$ 19.55万 - 项目类别:
Standard Grant