Potential Theory on Metric Measure Spaces
度量测度空间的位势理论
基本信息
- 批准号:0355027
- 负责人:
- 金额:$ 9.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-09-01 至 2008-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The Principal Investigator proposes to continue the program of developing analysis on metric spaces via three projects. The first project will study the trace spaces related to a Sobolev-type function space on general metric measurespaces that may not have a Riemannian structure; the idea here is to find out how well data have to be determined on the boundary of a given domain in order to obtain a reliable prediction of a corresponding extension of the data to theinterior of the domain. The second project is to explore the conformalMartin boundary for bounded domains in metric measure spaces of bounded geometry. The conformal Martin boundary is in general different from the classical Martin boundary corresponding to the Laplacian operator, and provides a more reliable gauge of the potential-theoretic boundary relevant to certain non-linear partial differential equations. The third project is to construct a distributional derivative structure on general metric spaces and thereby measure the boundary of domains and determine when spheres in such a metric space are rectifiable.Potential applications of the research proposed in this project include connections between stochastic processes and analysis in abstract metric spaces. Abstract metric spaces arise in applications inphysics and engineering, and hence the questions addressed in this project havepossible impact in physics and engineering as well. In addition, these projects unify the theory of subelliptic equations of divergence form in Riemannian manifolds with the theory of degenerate elliptic equations in the sub-Riemannian geometry of Carnot-Carath\'eodory spaces. Also, the construction and study of conformal Martin boundary is a new concept even in the Euclidean setting, and will provide a new tool in the study of boundary behavior of quasiconformal mappings.
首席研究员提议通过三个项目继续开发度量空间分析的计划。第一个项目将研究与Sobolev型函数空间有关的迹空间,一般度量测度空间可能没有黎曼结构;这里的想法是找出如何确定给定域边界上的数据,以便获得对域内部数据相应扩展的可靠预测。第二个项目是探讨有界几何的度量测度空间中有界域的共形Martin边界。共形马丁边界一般不同于对应于拉普拉斯算子的经典马丁边界,并且提供了与某些非线性偏微分方程相关的势理论边界的更可靠的规范。第三个项目是在一般度量空间上构造一个分布导数结构,从而测量域的边界,并确定在这种度量空间中的球面何时是可求长的。本项目提出的研究的潜在应用包括抽象度量空间中随机过程和分析之间的联系。抽象度量空间在物理学和工程学中有着广泛的应用,因此本课题所研究的问题也可能在物理学和工程学中产生影响。此外,这些项目统一了黎曼流形中的发散形式的次椭圆方程的理论与Carnot-Carath\'eodory空间的次黎曼几何中的退化椭圆方程的理论。同时,共形Martin边界的构造和研究在欧氏空间中也是一个新的概念,为研究拟共形映射的边界性质提供了一个新的工具。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nageswari Shanmugalingam其他文献
Minimal PF submanifolds in Hilbert spaces with symmetries
具有对称性的希尔伯特空间中的最小 PF 子流形
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Qing Liu;Nageswari Shanmugalingam;Zhou Xiaodan;Cavallina Lorenzo;Masahiro Morimoto - 通讯作者:
Masahiro Morimoto
Intrinsic Geometry and Analysis of Diffusion Processes and L ∞-Variational Problems
- DOI:
10.1007/s00205-014-0755-8 - 发表时间:
2014-05-17 - 期刊:
- 影响因子:2.400
- 作者:
Pekka Koskela;Nageswari Shanmugalingam;Yuan Zhou - 通讯作者:
Yuan Zhou
A characterization of $${{\mathrm{BMO}}}$$ self-maps of a metric measure space
- DOI:
10.1007/s13348-014-0126-7 - 发表时间:
2014-10-22 - 期刊:
- 影响因子:0.500
- 作者:
Juha Kinnunen;Riikka Korte;Niko Marola;Nageswari Shanmugalingam - 通讯作者:
Nageswari Shanmugalingam
Construction of a Dirichlet form on Metric Measure Spaces of Controlled Geometry
- DOI:
10.1007/s11118-024-10144-6 - 发表时间:
2024-06-01 - 期刊:
- 影响因子:0.800
- 作者:
Almaz Butaev;Liangbing Luo;Nageswari Shanmugalingam - 通讯作者:
Nageswari Shanmugalingam
Equivalence of solutions of eikonal equation in metric spaces
度量空间中的程函方程解的等价性
- DOI:
10.1016/j.jde.2020.10.018 - 发表时间:
2021 - 期刊:
- 影响因子:2.4
- 作者:
Qing Liu;Nageswari Shanmugalingam;Zhou Xiaodan - 通讯作者:
Zhou Xiaodan
Nageswari Shanmugalingam的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nageswari Shanmugalingam', 18)}}的其他基金
Exploring Large-Scale Geometry via Local and Nonlocal Potential Theory
通过局部和非局部势理论探索大尺度几何
- 批准号:
2348748 - 财政年份:2024
- 资助金额:
$ 9.85万 - 项目类别:
Standard Grant
The Role of Gromov Hyperbolicity and Besov Spaces in Quasiconformal Analysis
格罗莫夫双曲性和贝索夫空间在拟共形分析中的作用
- 批准号:
2054960 - 财政年份:2021
- 资助金额:
$ 9.85万 - 项目类别:
Standard Grant
Notions of Curvature and Their Role in Analysis on Metric Measure Spaces
曲率的概念及其在度量测度空间分析中的作用
- 批准号:
1800161 - 财政年份:2018
- 资助金额:
$ 9.85万 - 项目类别:
Standard Grant
Potential Theory of Functions of Bounded Variation and Quasiconformal Maps
有界变分函数和拟共形映射的势理论
- 批准号:
1500440 - 财政年份:2015
- 资助金额:
$ 9.85万 - 项目类别:
Continuing Grant
Metric geometry and functions of bounded variation
度量几何和有界变分函数
- 批准号:
1200915 - 财政年份:2012
- 资助金额:
$ 9.85万 - 项目类别:
Continuing Grant
U.S.-India Workshop and ICM Satelite Conference on p-Harmonic and Quasiconformal Mappings, Chennai, India, August 2010.
美印研讨会和 ICM 卫星会议 p 谐波和拟共形映射,印度金奈,2010 年 8 月。
- 批准号:
1019689 - 财政年份:2010
- 资助金额:
$ 9.85万 - 项目类别:
Standard Grant
Harmonic Analysis and Green Functions on Metric spaces
度量空间上的调和分析和格林函数
- 批准号:
0243355 - 财政年份:2002
- 资助金额:
$ 9.85万 - 项目类别:
Standard Grant
Harmonic Analysis and Green Functions on Metric spaces
度量空间上的调和分析和格林函数
- 批准号:
0100132 - 财政年份:2001
- 资助金额:
$ 9.85万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
- 批准号:12247163
- 批准年份:2022
- 资助金额:18.00 万元
- 项目类别:专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
- 批准号:12126512
- 批准年份:2021
- 资助金额:12.0 万元
- 项目类别:数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
- 批准号:61671064
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
Loewner Theory on Universal Covering Map and Hyperbolic Metric
关于通用覆盖图和双曲度量的 Loewner 理论
- 批准号:
23K03150 - 财政年份:2023
- 资助金额:
$ 9.85万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analysis on metric measure spaces by optimal transport theory and Markov processes
最优输运理论和马尔可夫过程对度量测度空间的分析
- 批准号:
22H04942 - 财政年份:2022
- 资助金额:
$ 9.85万 - 项目类别:
Grant-in-Aid for Scientific Research (S)
Geometric Function Theory in Euclidean and Metric Spaces
欧几里得和度量空间中的几何函数理论
- 批准号:
2055171 - 财政年份:2021
- 资助金额:
$ 9.85万 - 项目类别:
Standard Grant
A Novel Stability Metric Using Dynamic Models and Control Theory
使用动态模型和控制理论的新型稳定性度量
- 批准号:
561798-2021 - 财政年份:2021
- 资助金额:
$ 9.85万 - 项目类别:
University Undergraduate Student Research Awards
AF: Small: Metric Information Theory, Online Learning, and Competitive Analysis
AF:小:度量信息论、在线学习和竞争分析
- 批准号:
2007079 - 财政年份:2020
- 资助金额:
$ 9.85万 - 项目类别:
Standard Grant
Geometry and analysis on metric measure spaces based on the theory of Markov processes and optimal mass transport
基于马尔可夫过程和最优传质理论的几何与度量测度空间分析
- 批准号:
17H02846 - 财政年份:2017
- 资助金额:
$ 9.85万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Metric studies on uniform distribution theory
均匀分布理论的度量研究
- 批准号:
16K05204 - 财政年份:2016
- 资助金额:
$ 9.85万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Rank-Metric in Coding Theory and Machine Learning
编码理论和机器学习中的排名度量
- 批准号:
257536834 - 财政年份:2015
- 资助金额:
$ 9.85万 - 项目类别:
Research Grants
Towerd analysis on metric-measure spaces-- Cheeger theory and fractals
度量测度空间的塔分析--Cheeger理论和分形
- 批准号:
26610023 - 财政年份:2014
- 资助金额:
$ 9.85万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Manifold signal processing theory concerning metric structure and its application to biological signal processing
度量结构的流形信号处理理论及其在生物信号处理中的应用
- 批准号:
26280054 - 财政年份:2014
- 资助金额:
$ 9.85万 - 项目类别:
Grant-in-Aid for Scientific Research (B)