Metric geometry and functions of bounded variation

度量几何和有界变分函数

基本信息

项目摘要

Objects occurring in nature rarely are smooth in appearance. From fractal objects to porous media, the equations that govern dissipation of quantities such as heat and pressure have non-smooth components. Such non-smooth objects also occur as limits of certain smooth objects. To understand and exploit the behavior of such objects, we need to remove the smoothness assumptions from Riemannian geometry. For such non-smooth objects we need to study behaviors of non-smooth energy minimizers and their connection to the geometry, that is, the structural properties, of the underlying space or object. This project on metric geometry and functions on bounded variation contributes to this goal by exploring interconnections between the geometry of the underlying metric space equipped with a measure, and the properties of sets of minimal surface areas. The study of objects here are metric spaces equipped with a measure that is doubling (that is, measure of a ball is comparable to the measure of a concentric ball of double the radius) and such that the variance of a Lipschitz continuous function on a ball can be controlled in terms of the average value of its energy (computed using its local oscillation) on that ball. In this setting, this project aims to study properties such as rectifiability, porosity, shape, and natural dimension of sets of locally minimal surface areas. Analysis on metric measure spaces arose from many sources; the study of complex analytic functions, differential equations governing fractures in mixed material and associated mappings of finite distortion, control theory in engineering and associated Carnot-Caratheodory spaces, the study of the famous Poincare conjecture, are some of the roots of this field of study. However, unlike in the Euclidean situation where structural properties of minimal surfaces (surfaces with smallest surface energy) are well understood, in the non-smooth setting that arise in nature and in control theory problems of physics and engineering, the structure of minimal surfaces is poorly understood. This project seeks to explore such structures and expand our knowledge of minimal surfaces in a non-smooth setting. The results of this study will be useful in further understanding the change in the behavior of objects that are transformed due to natural effects such as heat and pressure. In addition to advancing our knowledge of non-smooth objects, the study conducted in this project will also contribute to the ongoing development of the theory of analysis on metric spaces; a great benefit of this developing theory is that since much of the structural tools available in classical Euclidean analysis are not available in the non-smooth setting, new tools and methods have necessarily to be developed, making the theory more accessible to a wider audience.
自然界中的物体很少是光滑的。从分形物体到多孔介质,控制热量和压力等量的耗散的方程都有非光滑分量。这种非平滑对象也作为某些平滑对象的限制出现。为了理解和利用这些物体的行为,我们需要从黎曼几何中移除光滑性假设。对于这样的非光滑对象,我们需要研究非光滑能量极小化器的行为及其与几何的联系,即底层空间或对象的结构属性。这个项目的度量几何和有界变差的功能有助于这一目标,通过探索之间的互连几何的基础度量空间配备了一个措施,和属性集的最小表面积。这里研究的对象是度量空间,它配备了一个加倍的测度(也就是说,一个球的测度相当于一个半径为两倍的同心球的测度),并且使得一个球上的Lipschitz连续函数的方差可以根据它在该球上的能量(使用其局部振荡计算)的平均值来控制。在这种情况下,这个项目的目的是研究属性,如可矫正性,孔隙率,形状和自然尺寸的局部最小表面积的集合。 分析度量措施空间产生了许多来源;研究复杂的解析函数,微分方程管理骨折的混合材料和相关映射的有限变形,控制理论在工程和相关的卡诺-Caratheodory空间,研究著名的庞加莱猜想,是一些根源,这一领域的研究。然而,不同于在欧几里得的情况下,极小曲面(具有最小表面能的曲面)的结构性质被很好地理解,在自然界和物理学和工程学的控制理论问题中出现的非光滑设置中,极小曲面的结构知之甚少。这个项目旨在探索这种结构,并扩大我们在非光滑环境中的最小表面的知识。这项研究的结果将有助于进一步了解由于热和压力等自然效应而改变的物体的行为变化。除了提高我们对非光滑物体的认识外,本项目进行的研究还将有助于度量空间分析理论的不断发展;这一发展理论的一个巨大好处是,由于经典欧几里得分析中可用的大部分结构工具在非光滑环境中不可用,因此必须开发新的工具和方法,使理论更容易为更广泛的受众所接受。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nageswari Shanmugalingam其他文献

Minimal PF submanifolds in Hilbert spaces with symmetries
具有对称性的希尔伯特空间中的最小 PF 子流形
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Qing Liu;Nageswari Shanmugalingam;Zhou Xiaodan;Cavallina Lorenzo;Masahiro Morimoto
  • 通讯作者:
    Masahiro Morimoto
Intrinsic Geometry and Analysis of Diffusion Processes and L ∞-Variational Problems
A characterization of $${{\mathrm{BMO}}}$$ self-maps of a metric measure space
  • DOI:
    10.1007/s13348-014-0126-7
  • 发表时间:
    2014-10-22
  • 期刊:
  • 影响因子:
    0.500
  • 作者:
    Juha Kinnunen;Riikka Korte;Niko Marola;Nageswari Shanmugalingam
  • 通讯作者:
    Nageswari Shanmugalingam
Construction of a Dirichlet form on Metric Measure Spaces of Controlled Geometry
  • DOI:
    10.1007/s11118-024-10144-6
  • 发表时间:
    2024-06-01
  • 期刊:
  • 影响因子:
    0.800
  • 作者:
    Almaz Butaev;Liangbing Luo;Nageswari Shanmugalingam
  • 通讯作者:
    Nageswari Shanmugalingam
Equivalence of solutions of eikonal equation in metric spaces
度量空间中的程函方程解的等价性
  • DOI:
    10.1016/j.jde.2020.10.018
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Qing Liu;Nageswari Shanmugalingam;Zhou Xiaodan
  • 通讯作者:
    Zhou Xiaodan

Nageswari Shanmugalingam的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nageswari Shanmugalingam', 18)}}的其他基金

Exploring Large-Scale Geometry via Local and Nonlocal Potential Theory
通过局部和非局部势理论探索大尺度几何
  • 批准号:
    2348748
  • 财政年份:
    2024
  • 资助金额:
    $ 23.78万
  • 项目类别:
    Standard Grant
The Role of Gromov Hyperbolicity and Besov Spaces in Quasiconformal Analysis
格罗莫夫双曲性和贝索夫空间在拟共形分析中的作用
  • 批准号:
    2054960
  • 财政年份:
    2021
  • 资助金额:
    $ 23.78万
  • 项目类别:
    Standard Grant
Notions of Curvature and Their Role in Analysis on Metric Measure Spaces
曲率的概念及其在度量测度空间分析中的作用
  • 批准号:
    1800161
  • 财政年份:
    2018
  • 资助金额:
    $ 23.78万
  • 项目类别:
    Standard Grant
Potential Theory of Functions of Bounded Variation and Quasiconformal Maps
有界变分函数和拟共形映射的势理论
  • 批准号:
    1500440
  • 财政年份:
    2015
  • 资助金额:
    $ 23.78万
  • 项目类别:
    Continuing Grant
U.S.-India Workshop and ICM Satelite Conference on p-Harmonic and Quasiconformal Mappings, Chennai, India, August 2010.
美印研讨会和 ICM 卫星会议 p 谐波和拟共形映射,印度金奈,2010 年 8 月。
  • 批准号:
    1019689
  • 财政年份:
    2010
  • 资助金额:
    $ 23.78万
  • 项目类别:
    Standard Grant
Potential Theory on Metric Measure Spaces
度量测度空间的位势理论
  • 批准号:
    0355027
  • 财政年份:
    2004
  • 资助金额:
    $ 23.78万
  • 项目类别:
    Continuing Grant
Harmonic Analysis and Green Functions on Metric spaces
度量空间上的调和分析和格林函数
  • 批准号:
    0243355
  • 财政年份:
    2002
  • 资助金额:
    $ 23.78万
  • 项目类别:
    Standard Grant
Harmonic Analysis and Green Functions on Metric spaces
度量空间上的调和分析和格林函数
  • 批准号:
    0100132
  • 财政年份:
    2001
  • 资助金额:
    $ 23.78万
  • 项目类别:
    Standard Grant

相似国自然基金

2019年度国际理论物理中心-ICTP School on Geometry and Gravity (smr 3311)
  • 批准号:
    11981240404
  • 批准年份:
    2019
  • 资助金额:
    1.5 万元
  • 项目类别:
    国际(地区)合作与交流项目
新型IIIB、IVB 族元素手性CGC金属有机化合物(Constrained-Geometry Complexes)的合成及反应性研究
  • 批准号:
    20602003
  • 批准年份:
    2006
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Model theory, Diophantine geometry, and automorphic functions
模型论、丢番图几何和自守函数
  • 批准号:
    EP/X009823/1
  • 财政年份:
    2023
  • 资助金额:
    $ 23.78万
  • 项目类别:
    Fellowship
Computational design of proteins and protein functions
蛋白质和蛋白质功能的计算设计
  • 批准号:
    10406129
  • 财政年份:
    2022
  • 资助金额:
    $ 23.78万
  • 项目类别:
Rectifiability and Fine Geometry of Sets, Radon Measures, Harmonic Functions, and Temperatures
集合的可整流性和精细几何、氡气测量、调和函数和温度
  • 批准号:
    2154047
  • 财政年份:
    2022
  • 资助金额:
    $ 23.78万
  • 项目类别:
    Standard Grant
Computational design of proteins and protein functions
蛋白质和蛋白质功能的计算设计
  • 批准号:
    10654738
  • 财政年份:
    2022
  • 资助金额:
    $ 23.78万
  • 项目类别:
Theta functions in differential and arithmetic geometry
微分几何和算术几何中的 Theta 函数
  • 批准号:
    RGPIN-2017-04959
  • 财政年份:
    2022
  • 资助金额:
    $ 23.78万
  • 项目类别:
    Discovery Grants Program - Individual
Generalized Appell functions and geometry
广义阿佩尔函数和几何
  • 批准号:
    572707-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 23.78万
  • 项目类别:
    University Undergraduate Student Research Awards
Circuit-Specific Interrogation of the Primate Claustrum
灵长类动物闭状体的电路特异性询问
  • 批准号:
    10604913
  • 财政年份:
    2022
  • 资助金额:
    $ 23.78万
  • 项目类别:
Biomaterials for embolization and ablation of arterio-venous malformations
用于动静脉畸形栓塞和消融的生物材料
  • 批准号:
    10502874
  • 财政年份:
    2022
  • 资助金额:
    $ 23.78万
  • 项目类别:
Developing a Novel Vascularized Bone Microdevice for Investigating the Post-Stroke Bone Microenvironment
开发新型血管化骨微装置用于研究中风后骨微环境
  • 批准号:
    10463277
  • 财政年份:
    2022
  • 资助金额:
    $ 23.78万
  • 项目类别:
Zeta functions in fractal geometry and analysis
分形几何和分析中的 Zeta 函数
  • 批准号:
    RGPIN-2019-05237
  • 财政年份:
    2022
  • 资助金额:
    $ 23.78万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了