Potential Theory of Functions of Bounded Variation and Quasiconformal Maps
有界变分函数和拟共形映射的势理论
基本信息
- 批准号:1500440
- 负责人:
- 金额:$ 29.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-07-01 至 2018-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
When we view images of objects, what we see are various locations of the object emitting different intensities of light. We can think of the image of the object as formed by a collection of surfaces of different shapes, each with its own uniform brightness. Similarly, in the study of various mathematical objects such as functions that measure temperature at different locations, functions that measure electro-magnetic intensities, and functions that measure the velocity of fluid particles at various places in a fluid, can be understood in terms of the shape of the level sets of the function. (A level set is a set where the function takes on a given constant value.) This project in metric space analysis explores the behavior of functions that arise in the study of potential theory and quasiconformal mappings in terms of level sets. Applications of the the research project include image processing and edge detection. Many components of this project are suitable dissertation material for graduate students, and therefore will contribute to the training of future members of the STEM workforce.This project is concerned with links between geometry of a metric space given in terms of its sets of finite perimeter on the one hand, and nonlinear potential theory and quasiconformal mappings on the other hand. The spaces considered are equipped with a doubling measure supporting a 1-Poincare inequality. In the first part of the project the PI will explore interactions between collections of sets of finite perimeter and quasiconformal mappings, and between collections of sets of finite perimeter and nonlinear potential theory. The second part of the project will explore "tangent space" regularity of sets of quasiminimal boundary surfaces. The third part of the project is to develop a potential theory for functions of bounded variation. The last part of the project is to obtain a characterization of certain Poincare inequalities in terms of modulus of families of sets of finite perimeter. Applications of the research include further understanding of connections between metric geometry related to sets of finite perimeter and solutions to certain nonlinear partial differential equations. Such sets arise in the study of image processing and edge detection, while abstract metric spaces arise in Riemannian manifolds theory when considering Gromov-Hausdorff limit spaces as found in the works of Cheeger, Gromov, and Perelman. Furthermore, these projects will expand the current knowledge about geometry and the theory of sets of finite perimeter in Carnot-Caratheodory spaces.
当我们观察物体的图像时,我们看到的是物体发出不同强度光的不同位置。我们可以认为物体的图像是由不同形状的表面组成的,每个表面都有自己统一的亮度。同样,在研究各种数学对象时,例如测量不同位置温度的函数、测量电磁强度的函数以及测量流体中不同位置流体粒子速度的函数,都可以根据形状来理解。函数的水平集。(水平集是函数取给定常数值的集合。这个度量空间分析的项目探讨了在势理论和拟共形映射的研究中出现的函数在水平集方面的行为。本研究计画的应用领域包括影像处理与边缘侦测.本项目的许多内容都是适合研究生的论文材料,因此将有助于培养未来的STEM工作人员。本项目关注的是度量空间的几何之间的联系,一方面是它的有限周长集,另一方面是非线性势理论和拟共形映射。考虑的空间配备了一个加倍措施支持1-庞加莱不等式。在该项目的第一部分,PI将探讨有限周长集和拟共形映射之间的相互作用,以及有限周长集和非线性势理论之间的相互作用。第二部分的项目将探讨“切空间”的正则性集的拟最小边界曲面。本项目的第三部分是发展有界变差函数的势理论。该项目的最后一部分是获得某些庞加莱不等式的模的有限周长的集合的家庭的一个特征。研究的应用包括进一步理解与有限周长集相关的度量几何与某些非线性偏微分方程的解之间的联系。这样的集合出现在图像处理和边缘检测的研究中,而抽象度量空间出现在黎曼流形理论中,当考虑在Cheeger,Gromov和Perelman的作品中发现的Gromov-Hausdorff极限空间时。此外,这些项目将扩大目前的知识几何和理论的集合有限周长在卡诺-Caratheodory空间。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Existence and uniqueness of $$\infty $$ ∞ -harmonic functions under assumption of $$\infty $$ ∞ -Poincaré inequality
$$infty $$ 假设下 $$infty $$ 的存在性和唯一性 - 调和函数 $$infty $$ - 庞加莱不等式
- DOI:10.1007/s00208-018-1747-z
- 发表时间:2019
- 期刊:
- 影响因子:1.4
- 作者:Durand-Cartagena, Estibalitz;Jaramillo, Jesús A.;Shanmugalingam, Nageswari
- 通讯作者:Shanmugalingam, Nageswari
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nageswari Shanmugalingam其他文献
Minimal PF submanifolds in Hilbert spaces with symmetries
具有对称性的希尔伯特空间中的最小 PF 子流形
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Qing Liu;Nageswari Shanmugalingam;Zhou Xiaodan;Cavallina Lorenzo;Masahiro Morimoto - 通讯作者:
Masahiro Morimoto
Intrinsic Geometry and Analysis of Diffusion Processes and L ∞-Variational Problems
- DOI:
10.1007/s00205-014-0755-8 - 发表时间:
2014-05-17 - 期刊:
- 影响因子:2.400
- 作者:
Pekka Koskela;Nageswari Shanmugalingam;Yuan Zhou - 通讯作者:
Yuan Zhou
A characterization of $${{\mathrm{BMO}}}$$ self-maps of a metric measure space
- DOI:
10.1007/s13348-014-0126-7 - 发表时间:
2014-10-22 - 期刊:
- 影响因子:0.500
- 作者:
Juha Kinnunen;Riikka Korte;Niko Marola;Nageswari Shanmugalingam - 通讯作者:
Nageswari Shanmugalingam
Construction of a Dirichlet form on Metric Measure Spaces of Controlled Geometry
- DOI:
10.1007/s11118-024-10144-6 - 发表时间:
2024-06-01 - 期刊:
- 影响因子:0.800
- 作者:
Almaz Butaev;Liangbing Luo;Nageswari Shanmugalingam - 通讯作者:
Nageswari Shanmugalingam
Equivalence of solutions of eikonal equation in metric spaces
度量空间中的程函方程解的等价性
- DOI:
10.1016/j.jde.2020.10.018 - 发表时间:
2021 - 期刊:
- 影响因子:2.4
- 作者:
Qing Liu;Nageswari Shanmugalingam;Zhou Xiaodan - 通讯作者:
Zhou Xiaodan
Nageswari Shanmugalingam的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nageswari Shanmugalingam', 18)}}的其他基金
Exploring Large-Scale Geometry via Local and Nonlocal Potential Theory
通过局部和非局部势理论探索大尺度几何
- 批准号:
2348748 - 财政年份:2024
- 资助金额:
$ 29.78万 - 项目类别:
Standard Grant
The Role of Gromov Hyperbolicity and Besov Spaces in Quasiconformal Analysis
格罗莫夫双曲性和贝索夫空间在拟共形分析中的作用
- 批准号:
2054960 - 财政年份:2021
- 资助金额:
$ 29.78万 - 项目类别:
Standard Grant
Notions of Curvature and Their Role in Analysis on Metric Measure Spaces
曲率的概念及其在度量测度空间分析中的作用
- 批准号:
1800161 - 财政年份:2018
- 资助金额:
$ 29.78万 - 项目类别:
Standard Grant
Metric geometry and functions of bounded variation
度量几何和有界变分函数
- 批准号:
1200915 - 财政年份:2012
- 资助金额:
$ 29.78万 - 项目类别:
Continuing Grant
U.S.-India Workshop and ICM Satelite Conference on p-Harmonic and Quasiconformal Mappings, Chennai, India, August 2010.
美印研讨会和 ICM 卫星会议 p 谐波和拟共形映射,印度金奈,2010 年 8 月。
- 批准号:
1019689 - 财政年份:2010
- 资助金额:
$ 29.78万 - 项目类别:
Standard Grant
Potential Theory on Metric Measure Spaces
度量测度空间的位势理论
- 批准号:
0355027 - 财政年份:2004
- 资助金额:
$ 29.78万 - 项目类别:
Continuing Grant
Harmonic Analysis and Green Functions on Metric spaces
度量空间上的调和分析和格林函数
- 批准号:
0243355 - 财政年份:2002
- 资助金额:
$ 29.78万 - 项目类别:
Standard Grant
Harmonic Analysis and Green Functions on Metric spaces
度量空间上的调和分析和格林函数
- 批准号:
0100132 - 财政年份:2001
- 资助金额:
$ 29.78万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
- 批准号:12247163
- 批准年份:2022
- 资助金额:18.00 万元
- 项目类别:专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
- 批准号:12126512
- 批准年份:2021
- 资助金额:12.0 万元
- 项目类别:数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
- 批准号:61671064
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
Theory and algorithms for a new class of computationally amenable nonconvex functions
一类新的可计算非凸函数的理论和算法
- 批准号:
2416250 - 财政年份:2024
- 资助金额:
$ 29.78万 - 项目类别:
Standard Grant
Structure theory for measure-preserving systems, additive combinatorics, and correlations of multiplicative functions
保测系统的结构理论、加法组合学和乘法函数的相关性
- 批准号:
2347850 - 财政年份:2024
- 资助金额:
$ 29.78万 - 项目类别:
Continuing Grant
Probabilistic models of zeta-functions and applications to number theory
Zeta 函数的概率模型及其在数论中的应用
- 批准号:
22KJ2747 - 财政年份:2023
- 资助金额:
$ 29.78万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Theory and algorithms for a new class of computationally amenable nonconvex functions
一类新的可计算非凸函数的理论和算法
- 批准号:
2309729 - 财政年份:2023
- 资助金额:
$ 29.78万 - 项目类别:
Standard Grant
Model theory, Diophantine geometry, and automorphic functions
模型论、丢番图几何和自守函数
- 批准号:
EP/X009823/1 - 财政年份:2023
- 资助金额:
$ 29.78万 - 项目类别:
Fellowship
Connections Between L-functions and String Theory via Differential Equations in Automorphic Forms
通过自守形式微分方程连接 L 函数和弦理论
- 批准号:
2302309 - 财政年份:2023
- 资助金额:
$ 29.78万 - 项目类别:
Standard Grant
Chromatic homotopy theory, algebraic K-theory, and L-functions
色同伦理论、代数 K 理论和 L 函数
- 批准号:
2348963 - 财政年份:2023
- 资助金额:
$ 29.78万 - 项目类别:
Standard Grant
CAREER: Hessenberg Varieties, Symmetric Functions, and Combinatorial Representation Theory
职业:Hessenberg 簇、对称函数和组合表示论
- 批准号:
2237057 - 财政年份:2023
- 资助金额:
$ 29.78万 - 项目类别:
Continuing Grant
RTG: Linked via L-functions: training versatile researchers across number theory
RTG:通过 L 函数链接:跨数论培训多才多艺的研究人员
- 批准号:
2231514 - 财政年份:2023
- 资助金额:
$ 29.78万 - 项目类别:
Continuing Grant














{{item.name}}会员




