Potential Theory of Functions of Bounded Variation and Quasiconformal Maps

有界变分函数和拟共形映射的势理论

基本信息

项目摘要

When we view images of objects, what we see are various locations of the object emitting different intensities of light. We can think of the image of the object as formed by a collection of surfaces of different shapes, each with its own uniform brightness. Similarly, in the study of various mathematical objects such as functions that measure temperature at different locations, functions that measure electro-magnetic intensities, and functions that measure the velocity of fluid particles at various places in a fluid, can be understood in terms of the shape of the level sets of the function. (A level set is a set where the function takes on a given constant value.) This project in metric space analysis explores the behavior of functions that arise in the study of potential theory and quasiconformal mappings in terms of level sets. Applications of the the research project include image processing and edge detection. Many components of this project are suitable dissertation material for graduate students, and therefore will contribute to the training of future members of the STEM workforce.This project is concerned with links between geometry of a metric space given in terms of its sets of finite perimeter on the one hand, and nonlinear potential theory and quasiconformal mappings on the other hand. The spaces considered are equipped with a doubling measure supporting a 1-Poincare inequality. In the first part of the project the PI will explore interactions between collections of sets of finite perimeter and quasiconformal mappings, and between collections of sets of finite perimeter and nonlinear potential theory. The second part of the project will explore "tangent space" regularity of sets of quasiminimal boundary surfaces. The third part of the project is to develop a potential theory for functions of bounded variation. The last part of the project is to obtain a characterization of certain Poincare inequalities in terms of modulus of families of sets of finite perimeter. Applications of the research include further understanding of connections between metric geometry related to sets of finite perimeter and solutions to certain nonlinear partial differential equations. Such sets arise in the study of image processing and edge detection, while abstract metric spaces arise in Riemannian manifolds theory when considering Gromov-Hausdorff limit spaces as found in the works of Cheeger, Gromov, and Perelman. Furthermore, these projects will expand the current knowledge about geometry and the theory of sets of finite perimeter in Carnot-Caratheodory spaces.
当我们查看物体的图像时,我们看到的是物体的不同位置发出不同强度的光。我们可以认为物体的图像是由不同形状的表面的集合形成的,每个表面都有自己均匀的亮度。类似地,在研究各种数学对象时,例如测量不同位置的温度的函数、测量电磁强度的函数以及测量流体中不同位置的流体粒子的速度的函数,可以根据函数的水平集的形状来理解。 (水平集是函数取给定常数值的集合。)度量空间分析中的这个项目探讨了在水平集方面的势论和拟共形映射研究中出现的函数的行为。该研究项目的应用包括图像处理和边缘检测。该项目的许多组成部分都是适合研究生的论文材料,因此将有助于培训 STEM 劳动力的未来成员。该项目一方面关注以有限周长集给出的度量空间的几何形状,另一方面关注非线性势论和拟共形映射之间的联系。所考虑的空间配备了支持 1-庞加莱不等式的加倍测度。在该项目的第一部分中,PI 将探索有限周长集合和拟共形映射之间的相互作用,以及有限周长集合和非线性势理论之间的相互作用。该项目的第二部分将探索准最小边界面组的“切线空间”规律。该项目的第三部分是开发有界变分函数的潜在理论。该项目的最后一部分是根据有限周长集族的模数来获得某些庞加莱不等式的表征。该研究的应用包括进一步理解与有限周长组相关的度量几何与某些非线性偏微分方程的解之间的联系。此类集合出现在图像处理和边缘检测的研究中,而抽象度量空间出现在黎曼流形理论中,当考虑 Cheeger、Gromov 和 Perelman 的著作中发现的 Gromov-Hausdorff 极限空间时。此外,这些项目将扩展当前关于几何学和卡诺-卡拉西奥多里空间中有限周长集理论的知识。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Existence and uniqueness of $$\infty $$ ∞ -harmonic functions under assumption of $$\infty $$ ∞ -Poincaré inequality
$$infty $$ 假设下 $$infty $$ 的存在性和唯一性 - 调和函数 $$infty $$ - 庞加莱不等式
  • DOI:
    10.1007/s00208-018-1747-z
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    Durand-Cartagena, Estibalitz;Jaramillo, Jesús A.;Shanmugalingam, Nageswari
  • 通讯作者:
    Shanmugalingam, Nageswari
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nageswari Shanmugalingam其他文献

Minimal PF submanifolds in Hilbert spaces with symmetries
具有对称性的希尔伯特空间中的最小 PF 子流形
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Qing Liu;Nageswari Shanmugalingam;Zhou Xiaodan;Cavallina Lorenzo;Masahiro Morimoto
  • 通讯作者:
    Masahiro Morimoto
Intrinsic Geometry and Analysis of Diffusion Processes and L ∞-Variational Problems
Construction of a Dirichlet form on Metric Measure Spaces of Controlled Geometry
  • DOI:
    10.1007/s11118-024-10144-6
  • 发表时间:
    2024-06-01
  • 期刊:
  • 影响因子:
    0.800
  • 作者:
    Almaz Butaev;Liangbing Luo;Nageswari Shanmugalingam
  • 通讯作者:
    Nageswari Shanmugalingam
A characterization of $${{\mathrm{BMO}}}$$ self-maps of a metric measure space
  • DOI:
    10.1007/s13348-014-0126-7
  • 发表时间:
    2014-10-22
  • 期刊:
  • 影响因子:
    0.500
  • 作者:
    Juha Kinnunen;Riikka Korte;Niko Marola;Nageswari Shanmugalingam
  • 通讯作者:
    Nageswari Shanmugalingam
Equivalence of solutions of eikonal equation in metric spaces
度量空间中的程函方程解的等价性
  • DOI:
    10.1016/j.jde.2020.10.018
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Qing Liu;Nageswari Shanmugalingam;Zhou Xiaodan
  • 通讯作者:
    Zhou Xiaodan

Nageswari Shanmugalingam的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nageswari Shanmugalingam', 18)}}的其他基金

Exploring Large-Scale Geometry via Local and Nonlocal Potential Theory
通过局部和非局部势理论探索大尺度几何
  • 批准号:
    2348748
  • 财政年份:
    2024
  • 资助金额:
    $ 29.78万
  • 项目类别:
    Standard Grant
The Role of Gromov Hyperbolicity and Besov Spaces in Quasiconformal Analysis
格罗莫夫双曲性和贝索夫空间在拟共形分析中的作用
  • 批准号:
    2054960
  • 财政年份:
    2021
  • 资助金额:
    $ 29.78万
  • 项目类别:
    Standard Grant
Notions of Curvature and Their Role in Analysis on Metric Measure Spaces
曲率的概念及其在度量测度空间分析中的作用
  • 批准号:
    1800161
  • 财政年份:
    2018
  • 资助金额:
    $ 29.78万
  • 项目类别:
    Standard Grant
Metric geometry and functions of bounded variation
度量几何和有界变分函数
  • 批准号:
    1200915
  • 财政年份:
    2012
  • 资助金额:
    $ 29.78万
  • 项目类别:
    Continuing Grant
U.S.-India Workshop and ICM Satelite Conference on p-Harmonic and Quasiconformal Mappings, Chennai, India, August 2010.
美印研讨会和 ICM 卫星会议 p 谐波和拟共形映射,印度金奈,2010 年 8 月。
  • 批准号:
    1019689
  • 财政年份:
    2010
  • 资助金额:
    $ 29.78万
  • 项目类别:
    Standard Grant
Potential Theory on Metric Measure Spaces
度量测度空间的位势理论
  • 批准号:
    0355027
  • 财政年份:
    2004
  • 资助金额:
    $ 29.78万
  • 项目类别:
    Continuing Grant
Harmonic Analysis and Green Functions on Metric spaces
度量空间上的调和分析和格林函数
  • 批准号:
    0243355
  • 财政年份:
    2002
  • 资助金额:
    $ 29.78万
  • 项目类别:
    Standard Grant
Harmonic Analysis and Green Functions on Metric spaces
度量空间上的调和分析和格林函数
  • 批准号:
    0100132
  • 财政年份:
    2001
  • 资助金额:
    $ 29.78万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
  • 批准号:
    12247163
  • 批准年份:
    2022
  • 资助金额:
    18.00 万元
  • 项目类别:
    专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
  • 批准号:
    12126512
  • 批准年份:
    2021
  • 资助金额:
    12.0 万元
  • 项目类别:
    数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
  • 批准号:
    61671064
  • 批准年份:
    2016
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目

相似海外基金

Theory and algorithms for a new class of computationally amenable nonconvex functions
一类新的可计算非凸函数的理论和算法
  • 批准号:
    2416250
  • 财政年份:
    2024
  • 资助金额:
    $ 29.78万
  • 项目类别:
    Standard Grant
Structure theory for measure-preserving systems, additive combinatorics, and correlations of multiplicative functions
保测系统的结构理论、加法组合学和乘法函数的相关性
  • 批准号:
    2347850
  • 财政年份:
    2024
  • 资助金额:
    $ 29.78万
  • 项目类别:
    Continuing Grant
Probabilistic models of zeta-functions and applications to number theory
Zeta 函数的概率模型及其在数论中的应用
  • 批准号:
    22KJ2747
  • 财政年份:
    2023
  • 资助金额:
    $ 29.78万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Model theory of analytic functions
解析函数模型论
  • 批准号:
    2881804
  • 财政年份:
    2023
  • 资助金额:
    $ 29.78万
  • 项目类别:
    Studentship
Theory and algorithms for a new class of computationally amenable nonconvex functions
一类新的可计算非凸函数的理论和算法
  • 批准号:
    2309729
  • 财政年份:
    2023
  • 资助金额:
    $ 29.78万
  • 项目类别:
    Standard Grant
Model theory, Diophantine geometry, and automorphic functions
模型论、丢番图几何和自守函数
  • 批准号:
    EP/X009823/1
  • 财政年份:
    2023
  • 资助金额:
    $ 29.78万
  • 项目类别:
    Fellowship
Connections Between L-functions and String Theory via Differential Equations in Automorphic Forms
通过自守形式微分方程连接 L 函数和弦理论
  • 批准号:
    2302309
  • 财政年份:
    2023
  • 资助金额:
    $ 29.78万
  • 项目类别:
    Standard Grant
Chromatic homotopy theory, algebraic K-theory, and L-functions
色同伦理论、代数 K 理论和 L 函数
  • 批准号:
    2348963
  • 财政年份:
    2023
  • 资助金额:
    $ 29.78万
  • 项目类别:
    Standard Grant
CAREER: Hessenberg Varieties, Symmetric Functions, and Combinatorial Representation Theory
职业:Hessenberg 簇、对称函数和组合表示论
  • 批准号:
    2237057
  • 财政年份:
    2023
  • 资助金额:
    $ 29.78万
  • 项目类别:
    Continuing Grant
RTG: Linked via L-functions: training versatile researchers across number theory
RTG:通过 L 函数链接:跨数论培训多才多艺的研究人员
  • 批准号:
    2231514
  • 财政年份:
    2023
  • 资助金额:
    $ 29.78万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了