Neural Dynamic Programming for Automotive Engine Control
汽车发动机控制的神经动态规划
基本信息
- 批准号:0355364
- 负责人:
- 金额:$ 10万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-08-15 至 2007-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Neural dynamic programming (NDP) is a scheme that provides approximate solutions to dynamic programming in which neural networks are used as a tool for function approximation. Such a scheme is applicable to problems that minimize/maximize a cost but for which a traditional dynamic programming approach is not feasible since the cost function is usually not known. In the present project, applications of NDP to automotive engine control will be studied and implemented. A challenging problem facing the automotive industry is to design vehicles that generate emissions satisfying the federal government's future emission regulations. The challenge here is to minimize the emission and at the same time to achieve better fuel economy and vehicle driveability. In the past few years, the automotive industry has engaged in efforts to develop engine control algorithms that will generate emissions satisfying the government's emission standards. Emissions generated by automobiles are one of the major sources for air pollution in the United States. Theoretically, emissions can be controlled to a minimum possible level by controlling the engine combustion process so that the air and fuel are mixed at certain desired ratio. This control problem, as it is known, turns out to be very difficult to solve. This is partly due to the complexity of modern automotive engines and due to the complexity of the fuel combustion process. In addition to achieving lower emissions, the automotive industry has also engaged in efforts to design cars that have better driveability and consume less fuelNDP implementation can be accomplished by adding a $1-10 chip developed under a previous NSF SBIR grant that, with additional training, could also be to reduce the cost of fuel flexibility an urgent strategic need.
神经动态规划(NDP)是一种为动态规划提供近似解的方案,其中神经网络用作函数逼近的工具。这种方案适用于最小化/最大化成本的问题,但由于成本函数通常未知,因此传统的动态规划方法不可行。在本项目中,将研究和实施NDP在汽车发动机控制中的应用。汽车工业面临的一个挑战性问题是设计出产生满足联邦政府未来排放法规的排放的车辆。这里的挑战是最大限度地减少排放,同时实现更好的燃油经济性和车辆驾驶性能。在过去的几年中,汽车工业致力于开发将产生满足政府排放标准的排放的发动机控制算法。汽车排放的废气是美国空气污染的主要来源之一。从理论上讲,通过控制发动机燃烧过程,使空气和燃料以一定的理想比例混合,可以将排放控制在尽可能低的水平。众所周知,这个控制问题很难解决。这部分是由于现代汽车发动机的复杂性以及燃料燃烧过程的复杂性。除了实现更低的排放量,汽车行业还致力于设计具有更好的驾驶性能和更少的燃料消耗的汽车。NDP的实施可以通过添加根据先前NSF SBIR拨款开发的1 -10美元芯片来完成,通过额外的培训,也可以降低燃料灵活性的成本,这是一个紧迫的战略需求。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Derong Liu其他文献
span style=font-family:; roman,serif;font-size:10.5pt;= new= times=Data-driven neuro-optimal temperature control of water gas shift reaction using stable iterative adaptive dy
使用稳定迭代自适应dy进行数据驱动的水煤气变换反应神经最优温度控制
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:7.7
- 作者:
Qinglai Wei;Derong Liu - 通讯作者:
Derong Liu
Decentralized control for large-scale nonlinear systems with unknown mismatched interconnections via policy iteration
通过策略迭代对具有未知失配互连的大规模非线性系统进行分散控制
- DOI:
10.1109/tsmc.2017.2690665 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Bo Zhao;Ding Wang;Guang Shi;Derong Liu;Yuanchun Li - 通讯作者:
Yuanchun Li
Robust Exponential Synchronization for Memristor Neural Networks With Nonidentical Characteristics by Pinning Control
通过钉扎控制实现具有不同特性的忆阻器神经网络的鲁棒指数同步
- DOI:
10.1109/tsmc.2019.2911510 - 发表时间:
2019-04 - 期刊:
- 影响因子:0
- 作者:
Yueheng Li;Biao Luo;Derong Liu;Yin Yang;Zhanyu Yang - 通讯作者:
Zhanyu Yang
A Novel Iterative-Adaptive Dynamic Programming for Discrete-Time Nonlinear Systems
离散时间非线性系统的新型迭代自适应动态规划
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Qinglai Wei;Derong Liu - 通讯作者:
Derong Liu
Event-based input-constrained nonlinear H_{\infty} state feedback with adaptive critic and neural implementation
具有自适应批评器和神经实现的基于事件的输入约束非线性 H_{\infty} 状态反馈
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:6
- 作者:
Ding Wang;Chaoxu Mu;Qichao Zhang;Derong Liu - 通讯作者:
Derong Liu
Derong Liu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Derong Liu', 18)}}的其他基金
EAGER: Adaptive Dynamic Programming for Residential Energy System Control and Management
EAGER:住宅能源系统控制和管理的自适应动态规划
- 批准号:
1027602 - 财政年份:2010
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Finite Horizon Discrete-Time Adaptive Dynamic Programming
有限时域离散时间自适应动态规划
- 批准号:
0621694 - 财政年份:2006
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Power Control and Call Admission Policies for Multiclass Traffic in SIR-Based Power-Controlled DS-CDMA Cellular Networks
基于 SIR 的功率控制 DS-CDMA 蜂窝网络中多类流量的功率控制和呼叫准入策略
- 批准号:
0203063 - 财政年份:2002
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
CAREER: Neural Network-Based Adaptive Critic Designs for Broadband Network Traffic Control
职业:基于神经网络的宽带网络流量控制自适应批评设计
- 批准号:
9874601 - 财政年份:1999
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
A Qualitative Study of Time-Lagged Recurrent Networks
时滞循环网络的定性研究
- 批准号:
0096198 - 财政年份:1999
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
CAREER: Neural Network-Based Adaptive Critic Designs for Broadband Network Traffic Control
职业:基于神经网络的宽带网络流量控制自适应批评设计
- 批准号:
9996428 - 财政年份:1999
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
A Qualitative Study of Time-Lagged Recurrent Networks
时滞循环网络的定性研究
- 批准号:
9732785 - 财政年份:1998
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
相似国自然基金
Dynamic Credit Rating with Feedback Effects
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
相似海外基金
Rubber DUQ: Flexible Dynamic Universal Quantum programming
Rubber DUQ:灵活动态通用量子编程
- 批准号:
EP/X025551/1 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Research Grant
Stochasticity in Approximate Dynamic Programming
近似动态规划中的随机性
- 批准号:
RGPIN-2020-04301 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
Discovery Grants Program - Individual
Development of a dynamic and friendly program visualization for learning materials of functional programming
开发动态且友好的程序可视化,用于函数式编程的学习材料
- 批准号:
22K12320 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Approximate Dynamic Programming for Service Systems
服务系统的近似动态规划
- 批准号:
RGPIN-2020-04229 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
Discovery Grants Program - Individual
Stochastic dynamic programming for modelling and solving extended multivariate structural models
用于建模和求解扩展多元结构模型的随机动态规划
- 批准号:
RGPIN-2018-04432 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
Discovery Grants Program - Individual
Approximate Dynamic Programming Methods for Dynamic Resource Allocation Problems in Health Care
医疗保健中动态资源分配问题的近似动态规划方法
- 批准号:
RGPIN-2018-05225 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
Discovery Grants Program - Individual
Data-driven stochastic dynamic programming approaches for optimal planning of disease screening and chronic disorder management
数据驱动的随机动态规划方法,用于疾病筛查和慢性疾病管理的优化规划
- 批准号:
RGPIN-2018-06596 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
Discovery Grants Program - Individual
Implementation of Dynamic Programming Languages
动态编程语言的实现
- 批准号:
RGPIN-2016-05682 - 财政年份:2021
- 资助金额:
$ 10万 - 项目类别:
Discovery Grants Program - Individual
Overcoming the curse of dimensionality in dynamic programming by tensor decompositions
通过张量分解克服动态规划中的维数灾难
- 批准号:
EP/V04771X/1 - 财政年份:2021
- 资助金额:
$ 10万 - 项目类别:
Research Grant
Error Inclusive Programming and Common-Sense Oriented Feature Extraction for Dynamic Acquisition and Correction of Robotic Actions
错误包容编程和面向常识的特征提取,用于机器人动作的动态获取和校正
- 批准号:
21J10800 - 财政年份:2021
- 资助金额:
$ 10万 - 项目类别:
Grant-in-Aid for JSPS Fellows