CAREER: Neural Network-Based Adaptive Critic Designs for Broadband Network Traffic Control
职业:基于神经网络的宽带网络流量控制自适应批评设计
基本信息
- 批准号:9874601
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1999
- 资助国家:美国
- 起止时间:1999-08-01 至 1999-09-21
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9874601LiuAdaptive critic designs (ACDs) are designs that approximate dynamic programming in the general case. A typical ACD consists of three modules that can be implemented using neural networks -- a Values module, a Prediction module , and a Decision module. This project aims to collaborate with industry in developing and implementing learning traffic control schemes for broadband communication networks using ACD's.An open and challenging problem facing the designer of the next generation of communication networks is to design schemes that integrate multimedia traffic efficiently and that guarantee the quality of service (QoS) for each traffic source. The challenge here is to maximize the network bandwidth utilization and at the same time to guarantee QoS. For this purpose, traffic control schemes including call admission control and traffic enforcement have been studied extensively in the past. However, most of the existing schemes sacrifice bandwidth utilization (i.e., waste network resources/lose revenue) in order to guarantee QoS. The preliminary study of this project has shown that, with the same QoS goals, higher bandwidth utilization than existing schemes can be achieved using a self-learning approach based on ACDs.Integrated self-learning traffic control at different levels (packet/call/network levels) will be implemented in this project. These include token bucket with optimized parameters, call admission control, and routing and congestion control. Two fundamental issues in the field of neural network-based ACDs will be investigated: (1) structural robustness analysis of neural network-based ACDs and (2) problems relating to convergence in neural network training. Education activities include: (1) Course, laboratory and curriculum development: To develop a graduate course on ACDs, to develop the Intelligent Systems Laboratory at Stevens, and the interdisciplinary effort which will emphasize ACDs/brain-like intelligent systems; (2) Research experience for undergraduate students: To expose undergraduate students to the numerous Opportunities available in a variety of ACDs research areas; and (3) Pedagogical initiatives: To develop a web-based interactive computer tool for automated homework submission and grading and to implement a white board system over the computer network to aid student learning; the evaluation of the pedagogical initiatives will use a web-based, on-line education assessment system in which the self-learning feature of ACDs is applied to optimal decision making.***
自适应临界设计(ACD)是在一般情况下近似动态规划的设计。典型的ACD由三个可以使用神经网络实现的模块组成-值模块,预测模块和决策模块。该项目的目的是与业界合作,在开发和实施学习业务控制计划的宽带通信网络使用ACD的。一个开放的和具有挑战性的问题,面临着下一代通信网络的设计师是设计方案,有效地集成多媒体流量,并保证服务质量(QoS)为每个流量源。这里的挑战是最大限度地提高网络带宽利用率,同时保证QoS。为此目的,过去已经广泛地研究了包括呼叫准入控制和业务强制的业务控制方案。然而,大多数现有方案牺牲了带宽利用率(即,浪费网络资源/损失收入)以保证QoS。该项目的初步研究表明,在相同的QoS目标下,使用基于ACD的自学习方法可以获得比现有方案更高的带宽利用率。该项目将实现不同级别(分组/呼叫/网络级别)的集成自学习流量控制。这些包括具有优化参数的令牌桶、呼叫准入控制以及路由和拥塞控制。基于神经网络的ACD领域中的两个基本问题将被研究:(1)基于神经网络的ACD的结构鲁棒性分析和(2)与神经网络训练中的收敛有关的问题。教育活动包括:(1)课程、实验室和课程开发:开发关于ACD的研究生课程,开发史蒂文斯的智能系统实验室,以及强调ACD/类脑智能系统的跨学科努力;(2)本科生的研究经验:让本科生接触各种ACD研究领域的众多机会;以及(3)教学举措:开发一个网上互动计算机工具,用于自动提交作业和评分,并在计算机网络上实施一个白色板系统,以帮助学生学习;对教学举措的评价将使用一个网上在线教育评估系统,在该系统中,应用ACDs的自学功能,以做出最佳决策。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Derong Liu其他文献
span style=font-family:; roman,serif;font-size:10.5pt;= new= times=Data-driven neuro-optimal temperature control of water gas shift reaction using stable iterative adaptive dy
使用稳定迭代自适应dy进行数据驱动的水煤气变换反应神经最优温度控制
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:7.7
- 作者:
Qinglai Wei;Derong Liu - 通讯作者:
Derong Liu
Decentralized control for large-scale nonlinear systems with unknown mismatched interconnections via policy iteration
通过策略迭代对具有未知失配互连的大规模非线性系统进行分散控制
- DOI:
10.1109/tsmc.2017.2690665 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Bo Zhao;Ding Wang;Guang Shi;Derong Liu;Yuanchun Li - 通讯作者:
Yuanchun Li
Robust Exponential Synchronization for Memristor Neural Networks With Nonidentical Characteristics by Pinning Control
通过钉扎控制实现具有不同特性的忆阻器神经网络的鲁棒指数同步
- DOI:
10.1109/tsmc.2019.2911510 - 发表时间:
2019-04 - 期刊:
- 影响因子:0
- 作者:
Yueheng Li;Biao Luo;Derong Liu;Yin Yang;Zhanyu Yang - 通讯作者:
Zhanyu Yang
A Novel Iterative-Adaptive Dynamic Programming for Discrete-Time Nonlinear Systems
离散时间非线性系统的新型迭代自适应动态规划
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Qinglai Wei;Derong Liu - 通讯作者:
Derong Liu
Event-based input-constrained nonlinear H_{\infty} state feedback with adaptive critic and neural implementation
具有自适应批评器和神经实现的基于事件的输入约束非线性 H_{\infty} 状态反馈
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:6
- 作者:
Ding Wang;Chaoxu Mu;Qichao Zhang;Derong Liu - 通讯作者:
Derong Liu
Derong Liu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Derong Liu', 18)}}的其他基金
EAGER: Adaptive Dynamic Programming for Residential Energy System Control and Management
EAGER:住宅能源系统控制和管理的自适应动态规划
- 批准号:
1027602 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Standard Grant
Finite Horizon Discrete-Time Adaptive Dynamic Programming
有限时域离散时间自适应动态规划
- 批准号:
0621694 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Standard Grant
Neural Dynamic Programming for Automotive Engine Control
汽车发动机控制的神经动态规划
- 批准号:
0355364 - 财政年份:2004
- 资助金额:
-- - 项目类别:
Continuing Grant
Power Control and Call Admission Policies for Multiclass Traffic in SIR-Based Power-Controlled DS-CDMA Cellular Networks
基于 SIR 的功率控制 DS-CDMA 蜂窝网络中多类流量的功率控制和呼叫准入策略
- 批准号:
0203063 - 财政年份:2002
- 资助金额:
-- - 项目类别:
Standard Grant
A Qualitative Study of Time-Lagged Recurrent Networks
时滞循环网络的定性研究
- 批准号:
0096198 - 财政年份:1999
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: Neural Network-Based Adaptive Critic Designs for Broadband Network Traffic Control
职业:基于神经网络的宽带网络流量控制自适应批评设计
- 批准号:
9996428 - 财政年份:1999
- 资助金额:
-- - 项目类别:
Standard Grant
A Qualitative Study of Time-Lagged Recurrent Networks
时滞循环网络的定性研究
- 批准号:
9732785 - 财政年份:1998
- 资助金额:
-- - 项目类别:
Continuing Grant
相似国自然基金
Neural Process模型的多样化高保真技术研究
- 批准号:62306326
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Proof Sharing and Transfer for Boosting Neural Network Verification
职业:促进神经网络验证的证明共享和转移
- 批准号:
2238079 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: Neural Network Enhanced Electromagnetics and Multiphysics Simulation Methods for RF and Microwave Reconfigurable Devices
职业:射频和微波可重构器件的神经网络增强电磁学和多物理场仿真方法
- 批准号:
2238124 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: Developing Neural Network Theory for Uncovering How the Brain Learns
职业:发展神经网络理论以揭示大脑如何学习
- 批准号:
2239780 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: DeepMatter: A Scalable and Programmable Embedded Deep Neural Network
职业:DeepMatter:可扩展且可编程的嵌入式深度神经网络
- 批准号:
2348983 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: A Multichannel Convolutional Neural Network Framework for Prediction of Damage Nucleation Sites in Microstructure
职业:用于预测微观结构中损伤成核位点的多通道卷积神经网络框架
- 批准号:
2341922 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: Towards theoretical foundations of neural network based representation learning
职业:迈向基于神经网络的表示学习的理论基础
- 批准号:
2145703 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: A Multichannel Convolutional Neural Network Framework for Prediction of Damage Nucleation Sites in Microstructure
职业生涯:用于预测微观结构中损伤成核位点的多通道卷积神经网络框架
- 批准号:
2142164 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: IIS: RI: Foundations of Deep Neural Network Robustness and Efficiency
职业:IIS:RI:深度神经网络鲁棒性和效率的基础
- 批准号:
2144960 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: Deciphering the neural network orchestrating sex differences in metabolic circadian rhythms
职业:破译协调代谢昼夜节律性别差异的神经网络
- 批准号:
2045267 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: Neural Network-Inspired Information Processing Beyond the Binary Digital Abstraction
职业:超越二进制数字抽象的神经网络启发信息处理
- 批准号:
1942900 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Continuing Grant