Some Problems for Bi-Harmonic Maps, Blow-Up Analysis for Some Variational Problems
双调和映射的一些问题,一些变分问题的放大分析
基本信息
- 批准号:0096030
- 负责人:
- 金额:$ 5.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1999
- 资助国家:美国
- 起止时间:1999-08-01 至 2002-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Changyou Wang其他文献
Subelliptic harmonic maps from Carnot groups
- DOI:
10.1007/s00526-002-0184-7 - 发表时间:
2003-09 - 期刊:
- 影响因子:2.1
- 作者:
Changyou Wang - 通讯作者:
Changyou Wang
Existence and stability of periodic solutions for parabolic systems with time delays
- DOI:
10.1016/j.jmaa.2007.07.082 - 发表时间:
2008-03 - 期刊:
- 影响因子:1.3
- 作者:
Changyou Wang - 通讯作者:
Changyou Wang
A compactness theorem of n-harmonic maps Un théorème de compacité pour applications n-harmoniques
N 调和映射的紧性定理 Un théorème de compacité pour n-harmoniques 应用
- DOI:
- 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
Changyou Wang - 通讯作者:
Changyou Wang
Experimental Studies of Crevice Corrosion of Buried Pipeline with Disbonded Coatings under Cathodic protection
阴极保护下埋地管道剥离涂层缝隙腐蚀实验研究
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:3.5
- 作者:
Wenhe Wang;Qing sheng Wang;Changyou Wang;Jun Yi - 通讯作者:
Jun Yi
On the periodicity of a max-type rational difference equation
关于max型有理差分方程的周期性
- DOI:
10.22436/jnsa.010.09.08 - 发表时间:
2017-09 - 期刊:
- 影响因子:0
- 作者:
Changyou Wang;Xiaotong Jing;Xiaohong Hu;Rui Li - 通讯作者:
Rui Li
Changyou Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Changyou Wang', 18)}}的其他基金
Variational Analysis and Hydrodynamics of Liquid Crystals
液晶的变分分析和流体动力学
- 批准号:
2101224 - 财政年份:2021
- 资助金额:
$ 5.81万 - 项目类别:
Standard Grant
Mathematical Analysis of Nematic Liquid Crystals and L-infinity Variational Problems
向列液晶与L-无穷变分问题的数学分析
- 批准号:
1764417 - 财政年份:2018
- 资助金额:
$ 5.81万 - 项目类别:
Continuing Grant
Analysis of nematic liquid crystal flows, high dimensional phase-transition, conserved geometric motion, and L-infinity variational problems
向列液晶流、高维相变、守恒几何运动和L-无穷变分问题的分析
- 批准号:
1522869 - 财政年份:2014
- 资助金额:
$ 5.81万 - 项目类别:
Continuing Grant
Analysis of nematic liquid crystal flows, high dimensional phase-transition, conserved geometric motion, and L-infinity variational problems
向列液晶流、高维相变、守恒几何运动和L-无穷变分问题的分析
- 批准号:
1265574 - 财政年份:2013
- 资助金额:
$ 5.81万 - 项目类别:
Continuing Grant
Conference on recent development in L-infinity variational problems and the associated nonlinear partial differential equations
L-无穷变分问题及相关非线性偏微分方程最新发展会议
- 批准号:
1103165 - 财政年份:2011
- 资助金额:
$ 5.81万 - 项目类别:
Standard Grant
Analysis of some L-infinity variational problems and Aronsson's equation, Ericksen-Leslie system modeling hydrodynamic flow of liquid crystals
一些 L-无穷变分问题和 Aronsson 方程、Ericksen-Leslie 系统模拟液晶流体动力流动的分析
- 批准号:
1001115 - 财政年份:2010
- 资助金额:
$ 5.81万 - 项目类别:
Standard Grant
Collaborative Research: L-infinity variational problems and the Aronsson equation
合作研究:L-无穷变分问题和阿伦森方程
- 批准号:
0601162 - 财政年份:2006
- 资助金额:
$ 5.81万 - 项目类别:
Standard Grant
Calculus of Variations in L-infinity, Fully Nonlinear Subelliptic Equations on Carnot Groups, Analysis of Biharmonic Maps and Harmonic Maps
L-无穷变分微积分、卡诺群上的完全非线性次椭圆方程、双调和映射和调和映射分析
- 批准号:
0400718 - 财政年份:2004
- 资助金额:
$ 5.81万 - 项目类别:
Standard Grant
Some Problems for Bi-Harmonic Maps, Blow-Up Analysis for Some Variational Problems
双调和映射的一些问题,一些变分问题的放大分析
- 批准号:
9970549 - 财政年份:1999
- 资助金额:
$ 5.81万 - 项目类别:
Standard Grant
Regularity, Convergence, and Uniqueness Problems for Harmonic Map Flows
调和映射流的正则性、收敛性和唯一性问题
- 批准号:
0096062 - 财政年份:1999
- 资助金额:
$ 5.81万 - 项目类别:
Standard Grant
相似海外基金
CRII: AF: Streaming Approximability of Maximum Directed Cut and other Constraint Satisfaction Problems
CRII:AF:最大定向切割和其他约束满足问题的流近似性
- 批准号:
2348475 - 财政年份:2024
- 资助金额:
$ 5.81万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 5.81万 - 项目类别:
Standard Grant
AF: Small: Problems in Algorithmic Game Theory for Online Markets
AF:小:在线市场的算法博弈论问题
- 批准号:
2332922 - 财政年份:2024
- 资助金额:
$ 5.81万 - 项目类别:
Standard Grant
Understanding the role of trauma in alcohol and other drug-related problems
了解创伤在酒精和其他毒品相关问题中的作用
- 批准号:
DP240101473 - 财政年份:2024
- 资助金额:
$ 5.81万 - 项目类别:
Discovery Projects
Organic Bionics: Soft Materials to Solve Hard Problems in Neuroengineering
有机仿生学:解决神经工程难题的软材料
- 批准号:
FT230100154 - 财政年份:2024
- 资助金额:
$ 5.81万 - 项目类别:
ARC Future Fellowships
Duration models related problems in econometrics
计量经济学中的持续时间模型相关问题
- 批准号:
23K25504 - 财政年份:2024
- 资助金额:
$ 5.81万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Problems in Regularity Theory of Partial Differential Equations
偏微分方程正则论中的问题
- 批准号:
2350129 - 财政年份:2024
- 资助金额:
$ 5.81万 - 项目类别:
Standard Grant
SHF: Small: Taming Huge Page Problems for Memory Bulk Operations Using a Hardware/Software Co-Design Approach
SHF:小:使用硬件/软件协同设计方法解决内存批量操作的大页面问题
- 批准号:
2400014 - 财政年份:2024
- 资助金额:
$ 5.81万 - 项目类别:
Standard Grant
REU Site: Applied Mathematics in Real World Problems
REU 网站:现实世界问题中的应用数学
- 批准号:
2349382 - 财政年份:2024
- 资助金额:
$ 5.81万 - 项目类别:
Continuing Grant














{{item.name}}会员




