Schrodinger Operators, Integrable Systems, and Other Simple Models in Mathematical Physics

数学物理中的薛定谔算子、可积系统和其他简单模型

基本信息

  • 批准号:
    0401277
  • 负责人:
  • 金额:
    $ 11万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-07-01 至 2008-06-30
  • 项目状态:
    已结题

项目摘要

Proposal DMS-0401277PI: Rowan Killip, UCLATitle: Schroedinger operators, integrable systems, and othersimple models in mathematical physicsABSTRACTThe project is devoted to the furtherance of the mathematicalunderstanding of certain simple physical models: (a) The long-timeasymptotics of the KdV equation will be studied for slowly decreasinginitial data via the inverse scattering/spectral method, with recentdevelopments in the spectral theory of such operators with merelysquare-integrable potentials leading the way. Of particular interest isthe question of what behaviours can be attributed to embedded singularspectrum in the way that solitons are related to isolated eigenvalues. (b)The Schrodinger equation with random potentials (or Anderson model) andits connections to unique continuation and thence to the uncertaintyprinciple (particularly in the form advocated by Fefferman). This alsomakes links to symplectic geometry. (c) The classical Coulomb gas at alltemperatures, or equivalently, random matrices at general $\beta$. Thiswill be pursued through the study of orthogonal polynomials with randomrecurrence coefficients as pioneered by Dumitriu and Edelman. (d) Thestability of the absolutely continuous spectrum of general Schrodingeroperators under rough long-range (say square-integrable) perturbation.By studying simple physical models, it is possible to concentrate onessential difficulties, without being waylaid by technicalities. Themethods and perhaps more importantly, perspectives that developed forthese simple models then inform those working closer to applications.Three examples taken from this project are the following: (a) By studyingrandom matrices at general inverse temperature, beta, one hopes to betterunderstand the most interesting case: when beta equals two. This case isso interesting because of its (currently mostly empirical) connection tothe zeros of the Riemann zeta function. Of course, analytic number theoryhas much to offer society at the present particularly in terms ofcryptography; while this project does not address these questionsdirectly, one must be careful to remember the many tributaries that make amighty river. (b) While integrable Hamiltonian PDEs have receivedintensive study in recent decades, attention has mostly been directed tothe cases of periodic or rapidly-decreasing initial data. This side-stepsthe very natural question of what behaviours are attributable to theexistence of embedded singular spectrum for the Lax operator. As is wellunderstood, solitons are a consequence of isolated eigenvalues. Apotential implication of this work is the prediction of new quasi-particlemodes in non-linear media. (c) The better understanding of inversescattering found from the study of the one-dimensional Schrodingerequation with rough and slowly decaying potentials may lead toimprovements in remote sensing technologies.
提案DMS-0401277 PI:Rowan Killip,UCLATITE:Schroedinger算子,可积系统和数学物理中的其他简单模型摘要该项目致力于促进对某些简单物理模型的深入理解:(a)将通过逆散射/谱方法研究初始数据缓慢减少时KdV方程的长期渐近性,与最近的发展,在光谱理论的这种运营商与merelysquare-integrable潜在的领导方式。 特别感兴趣的是什么行为可以归因于嵌入的奇异谱的方式孤立本征值相关的问题。(B)具有随机势的薛定谔方程(或安德森模型)及其与唯一延拓的联系,以及由此与不确定性原理(特别是在费曼所提倡的形式中)的联系。 这也与辛几何有关。(c)所有温度下的经典库仑气体,或者等价地,一般$\beta$下的随机矩阵。这将是追求通过研究正交多项式与randomrecurrence系数率先由杜米特留和埃德尔曼。(d)一般Schrodinger算子的绝对连续谱在粗糙长程(比如平方可积)扰动下的稳定性通过研究简单的物理模型,可以集中于本质上的困难,而不受技术性的阻碍。 这些方法,也许更重要的是,为这些简单的模型开发的观点,然后通知那些工作更接近应用程序。从这个项目中采取的三个例子如下:(a)通过研究一般逆温度下的随机矩阵,β,人们希望更好地理解最有趣的情况:当β等于2。 这种情况是如此有趣,因为它(目前主要是经验)连接到黎曼zeta函数的零点。 当然,解析数论在当今社会有很多贡献,特别是在密码学方面;虽然这个项目没有直接解决这些问题,但人们必须小心记住,许多支流构成了一条大河。 (b)虽然可积Hamilton偏微分方程在近几十年来得到了广泛的研究,但人们的注意力主要集中在周期或快速减少的初始数据的情况下。 这侧步非常自然的问题,什么行为是由于存在嵌入奇异谱的Lax算子。 众所周知,孤子是孤立本征值的结果。 这项工作的一个潜在的意义是在非线性介质中预测新的准粒子模式。(c)通过对具有粗糙和缓慢衰减势的一维薛定谔方程的研究,可以更好地理解逆散射现象,这可能会导致遥感技术的改进。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rowan Killip其他文献

Solitons and Scattering for the Cubic–Quintic Nonlinear Schrödinger Equation on $${\mathbb{R}^3}$$
  • DOI:
    10.1007/s00205-017-1109-0
  • 发表时间:
    2017-03-24
  • 期刊:
  • 影响因子:
    2.400
  • 作者:
    Rowan Killip;Tadahiro Oh;Oana Pocovnicu;Monica Vişan
  • 通讯作者:
    Monica Vişan
Sobolev spaces adapted to the Schrödinger operator with inverse-square potential
适应具有平方反比势的薛定谔算子的索博列夫空间
  • DOI:
    10.1007/s00209-017-1934-8
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rowan Killip;Changxing Miao;Monica Visan;Junyong Zhang;Jiqiang Zheng
  • 通讯作者:
    Jiqiang Zheng
Navier-Stokes-Korteweg方程式に対する時間大域解の一意存在性について
Navier-Stokes-Korteweg 方程时间全局解的唯一存在性
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rowan Killip;Satoshi Masaki;Jason Murphy;Monica Visan;Hirokazu Saito;Satoshi Masaki;Hirokazu Saito;Satoshi Masaki;村田美帆
  • 通讯作者:
    村田美帆
Asymptotic behavior of solutions to NLS with critical homogeneous nonlinearity
具有临界齐次非线性的 NLS 解的渐近行为
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rowan Killip;Satoshi Masaki;Jason Murphy;Monica Visan;Hirokazu Saito;Satoshi Masaki
  • 通讯作者:
    Satoshi Masaki
Orbital Stability of KdV Multisolitons in $$H^{-1}$$

Rowan Killip的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rowan Killip', 18)}}的其他基金

Integrable Partial Differential Equations as Pathfinders in Mathematical Physics
可积偏微分方程作为数学物理的探路者
  • 批准号:
    2154022
  • 财政年份:
    2022
  • 资助金额:
    $ 11万
  • 项目类别:
    Standard Grant
The Korteweg-de Vries Equation and Beyond
Korteweg-de Vries 方程及其他方程
  • 批准号:
    1856755
  • 财政年份:
    2019
  • 资助金额:
    $ 11万
  • 项目类别:
    Continuing Grant
Linear and nonlinear problems in dispersive Partial Differential Equations
色散偏微分方程中的线性和非线性问题
  • 批准号:
    1600942
  • 财政年份:
    2016
  • 资助金额:
    $ 11万
  • 项目类别:
    Continuing Grant
The nonlinear Schrodinger equation, its physical origins, and the spectral measures of random matrices
非线性薛定谔方程、其物理起源以及随机矩阵的谱测度
  • 批准号:
    1265868
  • 财政年份:
    2013
  • 资助金额:
    $ 11万
  • 项目类别:
    Continuing Grant
Simple models in Mathematical Physics: Random matrices and NLS
数学物理中的简单模型:随机矩阵和 NLS
  • 批准号:
    1001531
  • 财政年份:
    2010
  • 资助金额:
    $ 11万
  • 项目类别:
    Continuing Grant
Simple Models in Mathematical Physics
数学物理中的简单模型
  • 批准号:
    0701085
  • 财政年份:
    2007
  • 资助金额:
    $ 11万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: Spectra of Linear Differential Operators and Turbulence in Integrable Systems
合作研究:线性微分算子谱和可积系统中的湍流
  • 批准号:
    2039071
  • 财政年份:
    2019
  • 资助金额:
    $ 11万
  • 项目类别:
    Standard Grant
Collaborative Research: Spectra of Linear Differential Operators and Turbulence in Integrable Systems
合作研究:线性微分算子谱和可积系统中的湍流
  • 批准号:
    1716822
  • 财政年份:
    2017
  • 资助金额:
    $ 11万
  • 项目类别:
    Standard Grant
Collaborative Research: Spectra of Linear Differential Operators and Turbulence in Integrable Systems
合作研究:线性微分算子谱和可积系统中的湍流
  • 批准号:
    1715323
  • 财政年份:
    2017
  • 资助金额:
    $ 11万
  • 项目类别:
    Standard Grant
Duality and algebra of loop operators in supersymmetric field theories: integrable systems and cluster algebras
超对称场论中循环算子的对偶性和代数:可积系统和簇代数
  • 批准号:
    15K17634
  • 财政年份:
    2015
  • 资助金额:
    $ 11万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Integrable Systems, Integral Operators, and Probabilistic Models
可积系统、积分算子和概率模型
  • 批准号:
    1400248
  • 财政年份:
    2014
  • 资助金额:
    $ 11万
  • 项目类别:
    Standard Grant
Integrable PDEs and Hankel operators
可积偏微分方程和 Hankel 算子
  • 批准号:
    1411560
  • 财政年份:
    2014
  • 资助金额:
    $ 11万
  • 项目类别:
    Continuing Grant
An algebro-analytic study on the trace formulas associated with the linear ordinary differential operators and the nonlinear integrable systems
线性常微分算子和非线性可积系统的迹公式的代数分析研究
  • 批准号:
    23540255
  • 财政年份:
    2011
  • 资助金额:
    $ 11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A study of commutative rings of differential operators in completely integrable models and their eigenfunctions
完全可积模型中微分算子交换环及其本征函数的研究
  • 批准号:
    17340046
  • 财政年份:
    2005
  • 资助金额:
    $ 11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Mathematical Sciences: Method of Intertwining Operators for Integrable Models of Quantum Mechanics
数学科学:量子力学可积模型的交织算子方法
  • 批准号:
    8802643
  • 财政年份:
    1988
  • 资助金额:
    $ 11万
  • 项目类别:
    Continuing Grant
Vector Bundles and Integrable Particle Systems Associated With Linear Ordinary Differential Operators and ApplicationsTo Non-Linear Waves
与线性常微分算子相关的矢量丛和可积粒子系统及其在非线性波中的应用
  • 批准号:
    8002561
  • 财政年份:
    1980
  • 资助金额:
    $ 11万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了