Integrable Partial Differential Equations as Pathfinders in Mathematical Physics

可积偏微分方程作为数学物理的探路者

基本信息

  • 批准号:
    2154022
  • 负责人:
  • 金额:
    $ 31.1万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-06-15 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

Integrable systems have long served as pathfinders in science. Newton transformed our understanding of gravity because he was able to solve the two-body problem (a completely integrable system) and so verify that his inverse-square law of gravity matched empirical observations. That the three-body problem is not solvable in the same sense does not undermine this; indeed, it is precisely what makes the basic two-body paradigm so essential to our understanding! Likewise, the shell model of the atom is born of a completely integrable approximation. The integrable systems at the center of this project are significantly more complicated, but likewise serve as oracles for the full-complexity systems at the forefront of science and engineering. Indeed, all the concrete models studied as part of this project arose initially as effective models of real physical systems (such as water waves, optics, and magnetohydrodynamics), stripped down to reveal the central mechanisms behind the observed phenomena. To fulfill the role just articulated, we must study these integrable systems in large-data non-perturbative regimes - regimes where still simpler models cannot reproduce the observed phenomenology. This is a hallmark of this research project and indeed, of the methods developed in the PI's recent work, more broadly. The project provides significant research training opportunities for graduate students and postdoctoral scholars, who are integrated into every major activity of the project.The primary goal of the project is to advance the low-regularity theory of certain completely integrable dispersive partial differential equations, both as an end onto itself and as a tool for understanding the statistical mechanics of these systems. As a means to this end, the project further develops the commuting flows paradigm and seeks out new and diverse applications for several technical tools developed in support of this approach. Well-posedness problems will be studied, including that of the derivative nonlinear Schrodinger equation. Microscopic conservation laws will be deployed to further elaborate the spacetime structural properties of solutions constructed via commuting flows. The synthesis of renormalization and commuting flows technologies will be investigated, with a view to well-posedness, to the construction of Gibbs states, and to the dynamical properties thereof. Likewise, the continuum limit of discrete integrable models will be investigated both for deterministic initial data and as a means of gaining insight into Gibbs-state dynamics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
可积系统长期以来一直是科学领域的探路者。牛顿改变了我们对引力的理解,因为他能够解决二体问题(一个完全可积的系统),从而验证了他的引力平方反比定律与经验观察相匹配。在同样的意义上,三体问题是不可解的,但这并不破坏这一点;事实上,正是它使基本的两体范式对我们的理解如此重要!同样,原子的壳层模型也是由完全可积近似产生的。这个项目中心的可积系统要复杂得多,但同样可以作为科学和工程前沿的全复杂性系统的预言器。事实上,作为该项目的一部分所研究的所有具体模型最初都是作为真实物理系统(如水波、光学和磁流体动力学)的有效模型出现的,它们被剥离出来,揭示了所观察到的现象背后的核心机制。为了完成刚才阐述的角色,我们必须在大数据非扰动状态下研究这些可积系统——在这种状态下,更简单的模型无法再现所观察到的现象学。这是这个研究项目的一个标志,事实上,PI最近的工作中开发的方法更广泛。该项目为研究生和博士后提供了重要的研究训练机会,他们融入了项目的每一项主要活动。该项目的主要目标是推进某些完全可积色散偏微分方程的低正则性理论,既是对自身的终结,也是理解这些系统的统计力学的工具。为了实现这一目标,该项目进一步发展了通勤流范式,并为支持这一方法而开发的几种技术工具寻求新的、多样化的应用。将研究适定性问题,包括微分非线性薛定谔方程的适定性问题。微观守恒定律将用于进一步阐述通过交换流构建的解的时空结构特性。从适定性、吉布斯态的构造及其动力学性质的角度出发,研究了重整化和交换流技术的综合。同样,离散可积模型的连续统极限将被研究确定的初始数据和作为一种手段,获得洞察吉布斯状态动力学。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The scattering map determines the nonlinearity
散射图决定了非线性
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rowan Killip其他文献

Solitons and Scattering for the Cubic–Quintic Nonlinear Schrödinger Equation on $${\mathbb{R}^3}$$
  • DOI:
    10.1007/s00205-017-1109-0
  • 发表时间:
    2017-03-24
  • 期刊:
  • 影响因子:
    2.400
  • 作者:
    Rowan Killip;Tadahiro Oh;Oana Pocovnicu;Monica Vişan
  • 通讯作者:
    Monica Vişan
Navier-Stokes-Korteweg方程式に対する時間大域解の一意存在性について
Navier-Stokes-Korteweg 方程时间全局解的唯一存在性
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rowan Killip;Satoshi Masaki;Jason Murphy;Monica Visan;Hirokazu Saito;Satoshi Masaki;Hirokazu Saito;Satoshi Masaki;村田美帆
  • 通讯作者:
    村田美帆
Sobolev spaces adapted to the Schrödinger operator with inverse-square potential
适应具有平方反比势的薛定谔算子的索博列夫空间
  • DOI:
    10.1007/s00209-017-1934-8
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rowan Killip;Changxing Miao;Monica Visan;Junyong Zhang;Jiqiang Zheng
  • 通讯作者:
    Jiqiang Zheng
Asymptotic behavior of solutions to NLS with critical homogeneous nonlinearity
具有临界齐次非线性的 NLS 解的渐近行为
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rowan Killip;Satoshi Masaki;Jason Murphy;Monica Visan;Hirokazu Saito;Satoshi Masaki
  • 通讯作者:
    Satoshi Masaki
Orbital Stability of KdV Multisolitons in $$H^{-1}$$

Rowan Killip的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rowan Killip', 18)}}的其他基金

The Korteweg-de Vries Equation and Beyond
Korteweg-de Vries 方程及其他方程
  • 批准号:
    1856755
  • 财政年份:
    2019
  • 资助金额:
    $ 31.1万
  • 项目类别:
    Continuing Grant
Linear and nonlinear problems in dispersive Partial Differential Equations
色散偏微分方程中的线性和非线性问题
  • 批准号:
    1600942
  • 财政年份:
    2016
  • 资助金额:
    $ 31.1万
  • 项目类别:
    Continuing Grant
The nonlinear Schrodinger equation, its physical origins, and the spectral measures of random matrices
非线性薛定谔方程、其物理起源以及随机矩阵的谱测度
  • 批准号:
    1265868
  • 财政年份:
    2013
  • 资助金额:
    $ 31.1万
  • 项目类别:
    Continuing Grant
Simple models in Mathematical Physics: Random matrices and NLS
数学物理中的简单模型:随机矩阵和 NLS
  • 批准号:
    1001531
  • 财政年份:
    2010
  • 资助金额:
    $ 31.1万
  • 项目类别:
    Continuing Grant
Simple Models in Mathematical Physics
数学物理中的简单模型
  • 批准号:
    0701085
  • 财政年份:
    2007
  • 资助金额:
    $ 31.1万
  • 项目类别:
    Standard Grant
Schrodinger Operators, Integrable Systems, and Other Simple Models in Mathematical Physics
数学物理中的薛定谔算子、可积系统和其他简单模型
  • 批准号:
    0401277
  • 财政年份:
    2004
  • 资助金额:
    $ 31.1万
  • 项目类别:
    Standard Grant

相似国自然基金

Graphon mean field games with partial observation and application to failure detection in distributed systems
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Partial EIV 模型参数估计理论及其在测量数据处理中的应用研究
  • 批准号:
    41664001
  • 批准年份:
    2016
  • 资助金额:
    40.0 万元
  • 项目类别:
    地区科学基金项目
Partial Spread Bent函数与Bent-Negabent函数的构造及密码学性质研究
  • 批准号:
    61402377
  • 批准年份:
    2014
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
图的l1-嵌入性以及partial立方图和多重median图的刻画
  • 批准号:
    11261019
  • 批准年份:
    2012
  • 资助金额:
    45.0 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Conference: Geometric Measure Theory, Harmonic Analysis, and Partial Differential Equations: Recent Advances
会议:几何测度理论、调和分析和偏微分方程:最新进展
  • 批准号:
    2402028
  • 财政年份:
    2024
  • 资助金额:
    $ 31.1万
  • 项目类别:
    Standard Grant
Problems in Regularity Theory of Partial Differential Equations
偏微分方程正则论中的问题
  • 批准号:
    2350129
  • 财政年份:
    2024
  • 资助金额:
    $ 31.1万
  • 项目类别:
    Standard Grant
Conference: Recent advances in nonlinear Partial Differential Equations
会议:非线性偏微分方程的最新进展
  • 批准号:
    2346780
  • 财政年份:
    2024
  • 资助金额:
    $ 31.1万
  • 项目类别:
    Standard Grant
Partial differential equation: Schrodinger operator and long-time dynamics
偏微分方程:薛定谔算子和长期动力学
  • 批准号:
    FT230100588
  • 财政年份:
    2024
  • 资助金额:
    $ 31.1万
  • 项目类别:
    ARC Future Fellowships
Geometric Techniques for Studying Singular Solutions to Hyperbolic Partial Differential Equations in Physics
研究物理学中双曲偏微分方程奇异解的几何技术
  • 批准号:
    2349575
  • 财政年份:
    2024
  • 资助金额:
    $ 31.1万
  • 项目类别:
    Standard Grant
Regularity Problems in Free Boundaries and Degenerate Elliptic Partial Differential Equations
自由边界和简并椭圆偏微分方程中的正则问题
  • 批准号:
    2349794
  • 财政年份:
    2024
  • 资助金额:
    $ 31.1万
  • 项目类别:
    Standard Grant
Interfaces, Degenerate Partial Differential Equations, and Convexity
接口、简并偏微分方程和凸性
  • 批准号:
    2348846
  • 财政年份:
    2024
  • 资助金额:
    $ 31.1万
  • 项目类别:
    Standard Grant
Comparative Study of Finite Element and Neural Network Discretizations for Partial Differential Equations
偏微分方程有限元与神经网络离散化的比较研究
  • 批准号:
    2424305
  • 财政年份:
    2024
  • 资助金额:
    $ 31.1万
  • 项目类别:
    Continuing Grant
A new numerical analysis for partial differential equations with noise
带有噪声的偏微分方程的新数值分析
  • 批准号:
    DP220100937
  • 财政年份:
    2023
  • 资助金额:
    $ 31.1万
  • 项目类别:
    Discovery Projects
Nonlinear Stochastic Partial Differential Equations and Applications
非线性随机偏微分方程及其应用
  • 批准号:
    2307610
  • 财政年份:
    2023
  • 资助金额:
    $ 31.1万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了