On the p-adic Geometry of Modular Curves

模曲线的 p 进几何

基本信息

  • 批准号:
    9801389
  • 负责人:
  • 金额:
    $ 20.71万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1998
  • 资助国家:
    美国
  • 起止时间:
    1998-06-01 至 2003-05-31
  • 项目状态:
    已结题

项目摘要

ABSTRACT Robert Coleman University of California, Berkeley 98 01389 Professor Robert Coleman plans to continue his study of classical modular forms with particular attention to the Mazur-Gouvea conjecture. The project revolves around a recent discovery of the investigator's of a new geometric structure on certain modular forms. Coleman's "eigencurve" provides a new view of some of the most studied mathematical objects in modern number theory. If only a part of the planned project is completed, it could change the face of 150 year old branch of Number Theory. The experts are eagerly awaiting the first reports from this work. When mathematicians first used the techniques of calculus to study modular forms, they were interested in their interesting analytical properties. Modular forms were first seen as mathematical functions with incredibly strong symmetries. While these aspects of modular forms are still of intense interest, modern number theorists are mainly interested in the arithmetical information that modular forms contain. Modular forms encode information about the size of other mathematical constructions that at first (and even second) glance are totally unrelated. Numbers you can obtain from modular forms have a meaning quite separate from the forms themselves. Basically, modular forms count things. A large part of Number Theory in the second half of the twentieth century has been devoted to understanding why and how this strange counting works. Professor Coleman has some very new ideas about modular forms that should increase our understanding of a major mathematical mystery.
罗伯特·科尔曼(Robert Coleman)教授计划继续他对经典模形式的研究,并将重点放在Mazur-Gouvea猜想上。该项目围绕着研究人员最近在某些模块形式上发现的新几何结构展开。科尔曼的“特征曲线”为现代数论中一些最受研究的数学对象提供了一种新的观点。如果计划项目的一部分完成,它可能会改变拥有150年历史的数论分支的面貌。专家们急切地等待着这项工作的第一批报告。当数学家第一次使用微积分技术来研究模形式时,他们对其有趣的分析性质很感兴趣。模形式最初被视为具有极强对称性的数学函数。虽然模形式的这些方面仍然引起了人们的强烈兴趣,但现代数论学家主要对模形式包含的算术信息感兴趣。模块形式编码的信息与其他数学结构的大小有关,这些结构乍一看(甚至第二看)是完全不相关的。从模形式中得到的数字,其意义与模形式本身是完全不同的。基本上,模形式可以计数。20世纪下半叶,数论的很大一部分都致力于理解这种奇怪的计数为何以及如何工作。科尔曼教授对模形式有一些非常新的想法,这些想法应该会增加我们对一个主要数学奥秘的理解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Robert Coleman其他文献

OC15. Potential influence of zoledronic acid on primary tumour response during neoadjuvant chemotherapy for breast cancer
  • DOI:
    10.1016/j.ctrv.2008.03.041
  • 发表时间:
    2008-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Matthew Winter;Helen Thorpe;Roger Burkinshaw;Samantha Beevers;Robert Coleman
  • 通讯作者:
    Robert Coleman
Study protocol to investigate the effect of a lifestyle intervention on body weight, psychological health status and risk factors associated with disease recurrence in women recovering from breast cancer treatment [ISRCTN08045231]
  • DOI:
    10.1186/1471-2407-6-35
  • 发表时间:
    2006-02-09
  • 期刊:
  • 影响因子:
    3.400
  • 作者:
    John M Saxton;Amanda Daley;Nicola Woodroofe;Robert Coleman;Hilary Powers;Nanette Mutrie;Vanessa Siddall;Helen Crank
  • 通讯作者:
    Helen Crank
Optimizing the dose of upifitamab rilsodotin (UpRi; XMT-1536), a NaPi2b-directed dolaflexin antibody drug conjugate (ADC): A posthoc analysis of a phase 1b expansion study in ovarian cancer (319)
  • DOI:
    10.1016/s0090-8258(22)01541-4
  • 发表时间:
    2022-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Bradley Monk;Nicole Concin;Debra Richardson;Isabelle Ray-Coquard;Bhavana Pothuri;Christian Marth;Patricia Bernardo;Robert Burger;Ellie Im;Wassim Aldairy;Robert Coleman;Mansoor Mirza
  • 通讯作者:
    Mansoor Mirza
Impact of laparoscopic surgical algorithm to triage timing of tumor reductive surgery on overall survival in newly diagnosed advanced ovarian cancer (548)
  • DOI:
    10.1016/s0090-8258(22)01769-3
  • 发表时间:
    2022-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Nicole Fleming;Alpa Nick;Robert Coleman;Shannon Westin;Pedro Ramirez;Pamela Soliman;Bryan Fellman;Tyler Hilton;Kelly Rangel;Larissa Meyer;Kathleen Schmeler;Karen Lu;Anil Sood
  • 通讯作者:
    Anil Sood
Mirvetuximab soravtansine (MIRV) in patients with platinum-resistant ovarian cancer with high folate receptor alpha (FRα) expression: Evaluation of sequence of therapy on anti-tumor activity in the SORAYA study (002)
叶酸受体α(FRα)高表达的铂耐药卵巢癌患者使用 Mirvetuximab soravtansine(MIRV)的情况:SORAYA 研究(002)中对治疗顺序的抗肿瘤活性评估
  • DOI:
    10.1016/j.ygyno.2023.06.468
  • 发表时间:
    2023-09-01
  • 期刊:
  • 影响因子:
    4.100
  • 作者:
    Robert Coleman;Ana Oaknin;Sandro Pignata;Hannelore Denys;Nicoletta Colombo;Toon Van Gorp;Jason Konner;Margarita Romeo Marin;Philipp Harter;Conleth Murphy;Brooke Esteves;Michael Method;Domenica Lorusso;Ursula Matulonis
  • 通讯作者:
    Ursula Matulonis

Robert Coleman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Robert Coleman', 18)}}的其他基金

Local to Global Compatibility, p-adic Local Langlands and p-adic Level Lowering/Raising
局部到全局兼容性、p-adic 局部 Langlands 和 p-adic 电平降低/升高
  • 批准号:
    0901603
  • 财政年份:
    2009
  • 资助金额:
    $ 20.71万
  • 项目类别:
    Standard Grant
(semi-)Stable models of modular curves and the Spectral Halo
模曲线和光谱光环的(半)稳定模型
  • 批准号:
    0401594
  • 财政年份:
    2004
  • 资助金额:
    $ 20.71万
  • 项目类别:
    Continuing Grant
SBIR Phase I: Safe, Effective Fungicides Against Fruit Pathogens
SBIR 第一阶段:针对水果病原体的安全、有效的杀菌剂
  • 批准号:
    0214637
  • 财政年份:
    2002
  • 资助金额:
    $ 20.71万
  • 项目类别:
    Standard Grant
Families p-Modular Forms
家庭 p-模块化形式
  • 批准号:
    0100744
  • 财政年份:
    2001
  • 资助金额:
    $ 20.71万
  • 项目类别:
    Standard Grant
Upgrade of Ohio State University Chemistry Department NMR Facility
俄亥俄州立大学化学系核磁共振设施升级
  • 批准号:
    9708892
  • 财政年份:
    1997
  • 资助金额:
    $ 20.71万
  • 项目类别:
    Standard Grant
A Conference for Engineering Education Program Grantees to be held in Washington, DC, Spring 1997
工程教育项目受资助者会议将于 1997 年春季在华盛顿特区举行
  • 批准号:
    9700827
  • 财政年份:
    1996
  • 资助金额:
    $ 20.71万
  • 项目类别:
    Standard Grant
Mathematical Sciences: On the p-adic Geometry of Modular Curves
数学科学:模曲线的 p 进几何
  • 批准号:
    9307195
  • 财政年份:
    1993
  • 资助金额:
    $ 20.71万
  • 项目类别:
    Continuing Grant
Russian - U.S. Scientific Cooperative Project: Petrotectonic Study of Ultrahigh-Pressure Rocks in the Kokchetav Massif and the Maksyutov Complex of the Ural Mtns.
俄罗斯-美国科学合作项目:科克切塔夫地块和乌拉尔山脉马克修托夫杂岩超高压岩石的岩石构造研究。
  • 批准号:
    9304480
  • 财政年份:
    1993
  • 资助金额:
    $ 20.71万
  • 项目类别:
    Continuing Grant
Electronic Properties, Magnetotransport and Scanning Tunneling Microscopy (STM) in Quasi-One-Dimensional Metals
准一维金属的电子特性、磁输运和扫描隧道显微镜 (STM)
  • 批准号:
    8912694
  • 财政年份:
    1990
  • 资助金额:
    $ 20.71万
  • 项目类别:
    Continuing Grant
Petrological and Tectonic Investigations of High Pressure Metamorphism in NE Oman
阿曼东北部高压变质作用的岩石学和构造研究
  • 批准号:
    8904821
  • 财政年份:
    1989
  • 资助金额:
    $ 20.71万
  • 项目类别:
    Continuing Grant

相似国自然基金

2019年度国际理论物理中心-ICTP School on Geometry and Gravity (smr 3311)
  • 批准号:
    11981240404
  • 批准年份:
    2019
  • 资助金额:
    1.5 万元
  • 项目类别:
    国际(地区)合作与交流项目
新型IIIB、IVB 族元素手性CGC金属有机化合物(Constrained-Geometry Complexes)的合成及反应性研究
  • 批准号:
    20602003
  • 批准年份:
    2006
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Rational points on modular curves, and the geometry of arithmetic statistics
模曲线上的有理点和算术统计的几何
  • 批准号:
    2302356
  • 财政年份:
    2023
  • 资助金额:
    $ 20.71万
  • 项目类别:
    Continuing Grant
The Geometry of Quasi-modular Forms
拟模形式的几何
  • 批准号:
    2302548
  • 财政年份:
    2023
  • 资助金额:
    $ 20.71万
  • 项目类别:
    Standard Grant
Modular forms and arithmetic geometry
模形式和算术几何
  • 批准号:
    RGPIN-2017-06579
  • 财政年份:
    2021
  • 资助金额:
    $ 20.71万
  • 项目类别:
    Discovery Grants Program - Individual
The Trace Formula Method and the Arithmetic and Geometry of Modular Varieties in the Langlands Program
朗兰兹纲领中的迹公式法与模簇的算术和几何
  • 批准号:
    2132670
  • 财政年份:
    2020
  • 资助金额:
    $ 20.71万
  • 项目类别:
    Standard Grant
Modular forms and arithmetic geometry
模形式和算术几何
  • 批准号:
    RGPIN-2017-06579
  • 财政年份:
    2020
  • 资助金额:
    $ 20.71万
  • 项目类别:
    Discovery Grants Program - Individual
Modular forms and arithmetic geometry
模形式和算术几何
  • 批准号:
    RGPIN-2017-06579
  • 财政年份:
    2019
  • 资助金额:
    $ 20.71万
  • 项目类别:
    Discovery Grants Program - Individual
Shimura varieties - intersection theory, rigid geometry, stratifications and p-adic modular forms
Shimura 品种 - 相交理论、刚性几何、分层和 p-adic 模形式
  • 批准号:
    RGPIN-2014-05614
  • 财政年份:
    2018
  • 资助金额:
    $ 20.71万
  • 项目类别:
    Discovery Grants Program - Individual
Geometry of cluster modular groups
集群模块组的几何形状
  • 批准号:
    18J13304
  • 财政年份:
    2018
  • 资助金额:
    $ 20.71万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
The Trace Formula Method and the Arithmetic and Geometry of Modular Varieties in the Langlands Program
朗兰兹纲领中的迹公式法与模簇的算术和几何
  • 批准号:
    1802292
  • 财政年份:
    2018
  • 资助金额:
    $ 20.71万
  • 项目类别:
    Standard Grant
Modular forms and arithmetic geometry
模形式和算术几何
  • 批准号:
    RGPIN-2017-06579
  • 财政年份:
    2018
  • 资助金额:
    $ 20.71万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了