Topics in Finite and Infinite Dimensional Random Dynamical Systems

有限和无限维随机动力系统主题

基本信息

  • 批准号:
    0401708
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-10-01 至 2010-09-30
  • 项目状态:
    已结题

项目摘要

Random dynamical systems arise in the modeling of many phenomena in physics, biology, economics, etc. when uncertainties or random influences, called noises, are taken intoaccount. These random effects are not only introduced to compensate for the defects in some deterministic models, but also are often rather intrinsic phenomena. A fundamental problem is to study the dynamical behavior of orbits of random dynamical systems. This project seeks to establish some of the basic geometric framework for infinite dimensional random dynamical systems. By proving existence and robustness of random invariant manifolds and foliations, results on structural stability of deterministic systems under random perturbations will be sought. Floquet theory containing the multiplicative ergodic theorem will be developed, statistical properties of random attractors, and pattern formation in random media will be explored. The theory of smooth conjugacy for finite dimensional random dynamical systems will also be developed.The broader impacts of this project include the training of graduate students and junior faculty members in this emerging area of dynamics. Applications to the many fields mentioned above will create opportunities to interact on many levels with students and faculty members from other disciplines and will lead to advances in technology. One such example are the possible applications to the study of nano-devices, for instance, random thermal fluctuations or quantum effects must be accounted for in order to accurately predict performance. That field is one of many that is completely open to analysis using tools of the type to be developed here.
在物理、生物、经济等领域的许多现象的建模中,当考虑到不确定性或称为噪声的随机影响时,随机动力系统就会出现。这些随机效应的引入不仅是为了弥补某些确定性模型的缺陷,而且往往是一种相当固有的现象。一个基本问题是研究随机动力系统轨道的动力学行为。本项目旨在建立无限维随机动力系统的一些基本几何框架。通过证明随机不变流形和随机不变流形的存在性和稳健性,可以得到确定性系统在随机扰动下的结构稳定性的结果。将发展包含乘法遍历定理的Floquet理论,探索随机吸引子的统计性质,以及随机介质中的图案形成。有限维随机动力系统的光滑共轭理论也将得到发展。这个项目的更广泛的影响包括在这个新兴的动力学领域对研究生和初级教师的培训。在上述许多领域的应用将创造与其他学科的学生和教职员工在多个层面上互动的机会,并将导致技术的进步。一个这样的例子是在纳米器件研究中的可能应用,例如,为了准确地预测性能,必须考虑随机热波动或量子效应。该领域是许多完全开放的分析领域之一,可以使用这里将要开发的这种类型的工具进行分析。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Peter Bates其他文献

Surgical stabilization of acetabular injuries: approaches and methods
  • DOI:
    10.1016/j.mporth.2018.01.011
  • 发表时间:
    2018-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Jaikirty Rawal;Homa Arshad;Peter Bates
  • 通讯作者:
    Peter Bates
Outcomes of autologous chondrocyte transplantation (ACT) and autologous matrix-induced chondrogenesis (AMIC) in the hip: a systematic review and meta-analysis
Spinopelvic dissociation: have we finally got it right?
  • DOI:
    10.1016/j.spinee.2016.01.107
  • 发表时间:
    2016-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Ibraheim El-Daly;Syed Aftab;Peter Bates;Arun Ranganathan;Alexander Montgomery
  • 通讯作者:
    Alexander Montgomery
L’utilisation de bisphosphonates est-elle un facteur de risque de fractures périprothétiques atypiques ? Méta-analyse d’études de cohorte rétrospectives et revue systématique de la littérature actuelle
  • DOI:
    10.1016/j.rcot.2022.11.002
  • 发表时间:
    2023-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Pedro Ferreira;Peter Bates;Ahmed Daoub;Debashis Dass
  • 通讯作者:
    Debashis Dass
Is bisphosphonate use a risk factor for atypical periprosthetic/peri-implant fractures? – A metanalysis of retrospective cohort studies and systematic review of the current evidence
双膦酸盐的使用是否是假体周围/种植体周围非典型骨折的危险因素?——回顾性队列研究的荟萃分析和现有证据的系统综述

Peter Bates的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Peter Bates', 18)}}的其他基金

Collaborative Research: Topics in Infinite-Dimensional and Stochastic Dynamical Systems
合作研究:无限维和随机动力系统主题
  • 批准号:
    1413060
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: Invariant Manifolds for Multiscale Stochastic Dynamical Systems
合作研究:多尺度随机动力系统的不变流形
  • 批准号:
    0908348
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Pan-American Advanced Studies Institute (PASI) on Differential Equations and Nonlinear Analysis; Mexico city-veracruz, Mexico, October 15-23, 2009
泛美高级研究所(PASI)微分方程和非线性分析;
  • 批准号:
    0921323
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Midwest Quantitative Biology Conference
中西部定量生物学会议
  • 批准号:
    0609319
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
UBM: Integrated Analysis of Genetic and Cellular Networks
UBM:遗传和细胞网络的综合分析
  • 批准号:
    0531898
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Theory and Applications for Infinite Dimensional Dynamical Systems
无限维动力系统的理论与应用
  • 批准号:
    0200961
  • 财政年份:
    2002
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Topics in Infinite Dimensional Dynamical Systems
无限维动力系统主题
  • 批准号:
    0331290
  • 财政年份:
    2002
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Discrete and continuous nonlocal evolution equations and applications
离散和连续非局部演化方程及应用
  • 批准号:
    0224048
  • 财政年份:
    2002
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Discrete and continuous nonlocal evolution equations and applications
离散和连续非局部演化方程及应用
  • 批准号:
    9974340
  • 财政年份:
    1999
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Topics in Infinite Dimensional Dynamical Systems
无限维动力系统主题
  • 批准号:
    9970894
  • 财政年份:
    1999
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant

相似国自然基金

Finite-time Lyapunov 函数和耦合系统的稳定性分析
  • 批准号:
    11701533
  • 批准年份:
    2017
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Precision Physics in Finite and Infinite Volume
有限和无限体积中的精密物理
  • 批准号:
    EP/X021971/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Fellowship
Group Generation: From Finite To Infinite
群生成:从有限到无限
  • 批准号:
    EP/X011879/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Fellowship
Degenerate diffusions in finite and infinite dimensions: smoothing and convergence
有限和无限维度的简并扩散:平滑和收敛
  • 批准号:
    2246491
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Regularisation-by-noise in finite and infinite dimensions
有限和无限维度的噪声正则化
  • 批准号:
    2751070
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Studentship
Studies on holomorphic mappings on the homogeneous unit ball in finite or infinite dimensional complex Banach spaces
有限或无限维复Banach空间中齐次单位球的全纯映射研究
  • 批准号:
    20K03640
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on geodesic spaces of non-positive curvature on that groups act, infinite Coxeter groups and finite graphs
群作用、无限Coxeter群和有限图上非正曲率测地空间的研究
  • 批准号:
    18K03273
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
On the relation between infinite and finite places from the viewpoint of multiple zeta values over function fields
从函数域上多个zeta值的角度论无限处与有限处的关系
  • 批准号:
    18K13398
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Conference: A Broad Perspective on Finite and Infinite Dimensional Dynamical Systems'
会议:有限和无限维动力系统的广阔视角
  • 批准号:
    1700154
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Propagation of Dissipation: Stochastic Stabilization in Finite and Infinite Dimensions
合作研究:耗散传播:有限和无限维中的随机稳定
  • 批准号:
    1613337
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Propagation of Dissipation: Stochastic Stabilization in Finite and Infinite Dimensions
合作研究:耗散传播:有限和无限维中的随机稳定
  • 批准号:
    1612898
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了