Collaborative Research: Invariant Manifolds for Multiscale Stochastic Dynamical Systems

合作研究:多尺度随机动力系统的不变流形

基本信息

  • 批准号:
    0908348
  • 负责人:
  • 金额:
    $ 19万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-09-01 至 2014-08-31
  • 项目状态:
    已结题

项目摘要

The investigator and his collaborators are developing the fundamental theory for the existence and qualitative properties of coherent structures in the phase space of finite and infinite-dimensional stochastic dynamical systems that encode multiple spatio-temporal scales. Random dynamical systems arise in the modeling of many phenomena in physics, biology, climatology, economics, etc. when uncertainties or random influences are taken into account. The applications for this project will center on the dynamics of spike states, viewed as defects, for the Allen-Cahn or Cahn-Hilliard equation of materials science, oscillations in membrane potential and ionic concentrations within cells, and the motion of the molecular motor kinesin and its interactions with microtubules, all of which are subject to stochastic fluctuations. From the theoretical standpoint, Infinite-dimensional random dynamical systems may be generated, for example, by stochastic partial differential equations and random partial differential equations. The study of random dynamical systems involves both stochastic analysis and geometrical theory of dynamical systems. The investigator and his collaborators are establishing much of the basic geometric framework for multiscale, stochastic dynamical systems. In particular they are developing (i) The theory of normally hyperbolic invariant manifolds for stochastic dynamical systems including the persistence and the existence of random stable and unstable manifolds and foliations; (ii) The stochastic Exchange Lemma for fast-slow systems; (iii) The theory of approximate normally hyperbolic manifolds in a noisy environment. These are linked with concrete analysis of nonlinear partial differential and integral equations of evolutionary type, with particular attention paid to the persistence and dynamics of coherent structures. While many physical, biological, and financial processes appear to be subject to random or stochastic forces, there are also coherent structures underlying these processes which give some measure of predictability. This project is laying the groundwork for the determination of these hidden structures and for analyzing specific situations arising in several applications. Among these is a fundamental transport process within each cell of the body. Here, molecular motors attached to rod-like fibers carry essential chemicals and waste products to and from active sites within the cell, allowing for growth, rejuvenation, mobility, and communication. Understanding this process brings understanding of and perhaps therapies for debilitating and chronic diseases. Likewise, understanding the mechanisms that produce coherent structures in complex materials can lead to the design of advanced materials with particularly useful magnetic, semiconducting, superconducting, or biomechanical properties.
研究者和他的合作者正在开发的相干结构的存在和定性性质的相空间的有限和无限维随机动力系统,编码多个时空尺度的基本理论。随机动力系统出现在物理学、生物学、气候学、经济学等许多现象的建模中,当考虑到不确定性或随机影响时。该项目的应用将集中在材料科学Allen-Cahn或Cahn-Hilliard方程的尖峰状态(被视为缺陷)的动力学、细胞内膜电位和离子浓度的振荡以及分子运动驱动蛋白的运动及其与微管的相互作用,所有这些都受到随机波动的影响。从理论观点来看,无限维随机动力系统可以由例如随机偏微分方程和随机偏微分方程生成。随机动力系统的研究涉及到随机分析和动力系统的几何理论。研究者和他的合作者正在建立多尺度随机动力系统的基本几何框架。特别是他们正在开发(一)理论的正常双曲不变流形随机动力系统,包括持久性和存在的随机稳定和不稳定的流形和foliations;(二)随机交换引理的快慢系统;(三)理论的近似正常双曲流形在嘈杂的环境。这些都与具体分析的非线性偏微分和积分方程的演变类型,特别注意的持久性和动态的相干结构。虽然许多物理,生物和金融过程似乎受到随机或随机力量的影响,但这些过程也有连贯的结构,这些结构提供了某种程度的可预测性。 该项目正在为确定这些隐藏结构和分析几种应用中出现的具体情况奠定基础。 其中一个是身体每个细胞内的基本运输过程。 在这里,附着在杆状纤维上的分子马达将必需的化学物质和废物运送到细胞内的活性部位,使细胞能够生长、再生、移动和交流。 了解这一过程带来了对衰弱和慢性疾病的理解和治疗。 同样,理解在复杂材料中产生相干结构的机制可以导致设计具有特别有用的磁性,半导体,超导或生物力学特性的先进材料。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Peter Bates其他文献

Surgical stabilization of acetabular injuries: approaches and methods
  • DOI:
    10.1016/j.mporth.2018.01.011
  • 发表时间:
    2018-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Jaikirty Rawal;Homa Arshad;Peter Bates
  • 通讯作者:
    Peter Bates
Outcomes of autologous chondrocyte transplantation (ACT) and autologous matrix-induced chondrogenesis (AMIC) in the hip: a systematic review and meta-analysis
Spinopelvic dissociation: have we finally got it right?
  • DOI:
    10.1016/j.spinee.2016.01.107
  • 发表时间:
    2016-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Ibraheim El-Daly;Syed Aftab;Peter Bates;Arun Ranganathan;Alexander Montgomery
  • 通讯作者:
    Alexander Montgomery
L’utilisation de bisphosphonates est-elle un facteur de risque de fractures périprothétiques atypiques ? Méta-analyse d’études de cohorte rétrospectives et revue systématique de la littérature actuelle
  • DOI:
    10.1016/j.rcot.2022.11.002
  • 发表时间:
    2023-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Pedro Ferreira;Peter Bates;Ahmed Daoub;Debashis Dass
  • 通讯作者:
    Debashis Dass
Is bisphosphonate use a risk factor for atypical periprosthetic/peri-implant fractures? – A metanalysis of retrospective cohort studies and systematic review of the current evidence
双膦酸盐的使用是否是假体周围/种植体周围非典型骨折的危险因素?——回顾性队列研究的荟萃分析和现有证据的系统综述

Peter Bates的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Peter Bates', 18)}}的其他基金

Collaborative Research: Topics in Infinite-Dimensional and Stochastic Dynamical Systems
合作研究:无限维和随机动力系统主题
  • 批准号:
    1413060
  • 财政年份:
    2014
  • 资助金额:
    $ 19万
  • 项目类别:
    Continuing Grant
Pan-American Advanced Studies Institute (PASI) on Differential Equations and Nonlinear Analysis; Mexico city-veracruz, Mexico, October 15-23, 2009
泛美高级研究所(PASI)微分方程和非线性分析;
  • 批准号:
    0921323
  • 财政年份:
    2009
  • 资助金额:
    $ 19万
  • 项目类别:
    Standard Grant
Midwest Quantitative Biology Conference
中西部定量生物学会议
  • 批准号:
    0609319
  • 财政年份:
    2006
  • 资助金额:
    $ 19万
  • 项目类别:
    Standard Grant
UBM: Integrated Analysis of Genetic and Cellular Networks
UBM:遗传和细胞网络的综合分析
  • 批准号:
    0531898
  • 财政年份:
    2005
  • 资助金额:
    $ 19万
  • 项目类别:
    Continuing Grant
Topics in Finite and Infinite Dimensional Random Dynamical Systems
有限和无限维随机动力系统主题
  • 批准号:
    0401708
  • 财政年份:
    2004
  • 资助金额:
    $ 19万
  • 项目类别:
    Continuing Grant
Theory and Applications for Infinite Dimensional Dynamical Systems
无限维动力系统的理论与应用
  • 批准号:
    0200961
  • 财政年份:
    2002
  • 资助金额:
    $ 19万
  • 项目类别:
    Continuing Grant
Topics in Infinite Dimensional Dynamical Systems
无限维动力系统主题
  • 批准号:
    0331290
  • 财政年份:
    2002
  • 资助金额:
    $ 19万
  • 项目类别:
    Continuing Grant
Discrete and continuous nonlocal evolution equations and applications
离散和连续非局部演化方程及应用
  • 批准号:
    0224048
  • 财政年份:
    2002
  • 资助金额:
    $ 19万
  • 项目类别:
    Standard Grant
Discrete and continuous nonlocal evolution equations and applications
离散和连续非局部演化方程及应用
  • 批准号:
    9974340
  • 财政年份:
    1999
  • 资助金额:
    $ 19万
  • 项目类别:
    Standard Grant
Topics in Infinite Dimensional Dynamical Systems
无限维动力系统主题
  • 批准号:
    9970894
  • 财政年份:
    1999
  • 资助金额:
    $ 19万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Data-Driven Invariant Sets for Provably Safe Autonomy
协作研究:数据驱动的不变集可证明安全的自治
  • 批准号:
    2303157
  • 财政年份:
    2023
  • 资助金额:
    $ 19万
  • 项目类别:
    Standard Grant
Collaborative Research: Data-Driven Invariant Sets for Provably Safe Autonomy
协作研究:数据驱动的不变集可证明安全的自治
  • 批准号:
    2303158
  • 财政年份:
    2023
  • 资助金额:
    $ 19万
  • 项目类别:
    Standard Grant
Collaborative Research: Galilei and Poincare Invariant Calculations of the three Nucleon System
合作研究:三核子系统的伽利略和庞加莱不变量计算
  • 批准号:
    1005578
  • 财政年份:
    2010
  • 资助金额:
    $ 19万
  • 项目类别:
    Standard Grant
Collaborative Research: Galilei and Poincare Invariant Calculations of the Three Nucleon System
合作研究:三核子系统的伽利略和庞加莱不变量计算
  • 批准号:
    1005501
  • 财政年份:
    2010
  • 资助金额:
    $ 19万
  • 项目类别:
    Standard Grant
Collaborative Research: Invariant manifolds for multiscale stochastic dynamical systems
合作研究:多尺度随机动力系统的不变流形
  • 批准号:
    0909400
  • 财政年份:
    2009
  • 资助金额:
    $ 19万
  • 项目类别:
    Standard Grant
SHF: Small: Collaborative Research: Dynamic Invariant Inference, Enhanced
SHF:小型:协作研究:动态不变推理,增强型
  • 批准号:
    0917391
  • 财政年份:
    2009
  • 资助金额:
    $ 19万
  • 项目类别:
    Standard Grant
Collaborative Research: Randomized Invariant Features for Recognition
协作研究:用于识别的随机不变特征
  • 批准号:
    0222516
  • 财政年份:
    2002
  • 资助金额:
    $ 19万
  • 项目类别:
    Continuing Grant
Collaborative Research: Randomized Invariant Features for Recognition
协作研究:用于识别的随机不变特征
  • 批准号:
    0222943
  • 财政年份:
    2002
  • 资助金额:
    $ 19万
  • 项目类别:
    Continuing Grant
Collaborative Research: Understanding the Roles of Natural Selection and Evolutionary Constraints in the Maintenance of Invariant Floral Traits.
合作研究:了解自然选择和进化约束在维持不变花卉性状中的作用。
  • 批准号:
    9903880
  • 财政年份:
    1999
  • 资助金额:
    $ 19万
  • 项目类别:
    Standard Grant
RUI: Collaborative Research: Understanding the Roles of Natural Selection and Evolutionary Constraint in the Maintenance of Invariant Floral Traits.
RUI:合作研究:了解自然选择和进化约束在维持不变花卉性状中的作用。
  • 批准号:
    9904164
  • 财政年份:
    1999
  • 资助金额:
    $ 19万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了