Collaborative Research: Topics in Infinite-Dimensional and Stochastic Dynamical Systems

合作研究:无限维和随机动力系统主题

基本信息

  • 批准号:
    1413060
  • 负责人:
  • 金额:
    $ 21.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-07-15 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

While many physical, biological, climatological, and financial processes appear to be subject to random or stochastic forces, there are also coherent structures underlying these processes that give some measure of predictability. This project is laying the groundwork both for the determination of these hidden structures and for analyzing specific situations arising in several applications. Among these is the embryonic development of the wing of a fruit fly and its newly discovered relation to current through potassium channels in the cell membrane. Part of this project is to develop and use sophisticated mathematical techniques to understand that ionic current. The fruit fly model has implications for mammalian development and may lead to an understanding of the cause of some serious birth defects. Applications of the abstract mathematical investigations also include understanding of other dynamical systems subject to random perturbations, including the density distribution in highly excited plasmas or the fine structure of an alloy and how defects are distributed and evolve in time. This project builds upon the past work of the principal investigators and others to establish the existence of coherent structures embedded in the phase space of complex dynamical systems, both finite- and infinite-dimensional and both deterministic or subject to random forcing. The fundamental and abstract theory to be developed during the course of the project lies behind concrete and observed phenomena in the physical and biological sciences, particularly at the molecular, microscopic, or nano-scale. Infinite-dimensional dynamical systems are required to represent the temporal and spatial fluctuations of quantities subject to physical laws or biochemical processes, such as the distribution of bone morphogenic protein in a developing embryonic fly wing, the current through an ion channel in a cell membrane, the density of a relativistic plasma, or the motion of microscopic defects in an alloy, to name just a few of the systems considered in this project. Furthermore, as complex as these may be, stochastic perturbations must be considered due to thermal or other fluctuations in the environment and imprecise measurement of quantities at small scales. While one cannot hope to give exact representations of all states subject to complex spatial and temporal interaction, one can sometimes glean information due to the presence of robust, but possibly hidden, structures such as invariant manifolds and their invariant foliations whose existence is implied by the laws governing the processes under investigation. The goals of this project are to discover the conditions under which such structures exist, even when stochastically forced, and to examine the implications in the particular physical and biological systems underlying the equations.
虽然许多物理、生物、气候和金融过程似乎受到随机或随机力量的影响,但这些过程背后也有连贯的结构,提供了某种程度的可预测性。该项目正在为确定这些隐藏结构和分析在几个应用中出现的特定情况奠定基础。其中包括果蝇翅膀的胚胎发育及其新发现的与细胞膜上钾通道电流的关系。这个项目的一部分是开发和使用复杂的数学技术来理解离子流。果蝇模型对哺乳动物的发育有影响,并可能有助于理解一些严重出生缺陷的原因。抽象数学研究的应用还包括理解受随机扰动的其他动力系统,包括高激发等离子体中的密度分布或合金的精细结构,以及缺陷如何随时间分布和演化。这个项目建立在主要研究人员和其他人过去工作的基础上,以确定嵌入在复杂动力系统相空间中的相干结构的存在,复杂动力系统既有有限维也有无限维,既有确定性的,也有随机强迫的。在项目过程中要发展的基本和抽象的理论是物理和生物科学中的具体和观察到的现象,特别是在分子、微观或纳米尺度上。无限维动力系统被要求表示服从物理规律或生化过程的量的时间和空间波动,例如发育中的胚胎苍蝇翅膀中骨形态发生蛋白的分布,细胞膜中离子通道的电流,相对论等离子体的密度,或合金中微观缺陷的运动,仅举几个在本项目中考虑的系统。此外,尽管这些可能很复杂,但由于环境中的热或其他波动以及在小范围内对量的不精确测量,必须考虑随机扰动。虽然人们不能期望给出受复杂时空相互作用影响的所有状态的准确表示,但由于存在健壮但可能隐藏的结构,如不变流形及其不变叶,人们有时可以收集信息,这些结构的存在被管理所研究过程的定律所暗示。这个项目的目标是发现这种结构存在的条件,即使是在随机强迫的情况下,并检查作为方程基础的特定物理和生物系统中的含义。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Peter Bates其他文献

Surgical stabilization of acetabular injuries: approaches and methods
  • DOI:
    10.1016/j.mporth.2018.01.011
  • 发表时间:
    2018-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Jaikirty Rawal;Homa Arshad;Peter Bates
  • 通讯作者:
    Peter Bates
Outcomes of autologous chondrocyte transplantation (ACT) and autologous matrix-induced chondrogenesis (AMIC) in the hip: a systematic review and meta-analysis
Spinopelvic dissociation: have we finally got it right?
  • DOI:
    10.1016/j.spinee.2016.01.107
  • 发表时间:
    2016-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Ibraheim El-Daly;Syed Aftab;Peter Bates;Arun Ranganathan;Alexander Montgomery
  • 通讯作者:
    Alexander Montgomery
L’utilisation de bisphosphonates est-elle un facteur de risque de fractures périprothétiques atypiques ? Méta-analyse d’études de cohorte rétrospectives et revue systématique de la littérature actuelle
  • DOI:
    10.1016/j.rcot.2022.11.002
  • 发表时间:
    2023-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Pedro Ferreira;Peter Bates;Ahmed Daoub;Debashis Dass
  • 通讯作者:
    Debashis Dass
Is bisphosphonate use a risk factor for atypical periprosthetic/peri-implant fractures? – A metanalysis of retrospective cohort studies and systematic review of the current evidence
双膦酸盐的使用是否是假体周围/种植体周围非典型骨折的危险因素?——回顾性队列研究的荟萃分析和现有证据的系统综述

Peter Bates的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Peter Bates', 18)}}的其他基金

Collaborative Research: Invariant Manifolds for Multiscale Stochastic Dynamical Systems
合作研究:多尺度随机动力系统的不变流形
  • 批准号:
    0908348
  • 财政年份:
    2009
  • 资助金额:
    $ 21.5万
  • 项目类别:
    Continuing Grant
Pan-American Advanced Studies Institute (PASI) on Differential Equations and Nonlinear Analysis; Mexico city-veracruz, Mexico, October 15-23, 2009
泛美高级研究所(PASI)微分方程和非线性分析;
  • 批准号:
    0921323
  • 财政年份:
    2009
  • 资助金额:
    $ 21.5万
  • 项目类别:
    Standard Grant
Midwest Quantitative Biology Conference
中西部定量生物学会议
  • 批准号:
    0609319
  • 财政年份:
    2006
  • 资助金额:
    $ 21.5万
  • 项目类别:
    Standard Grant
UBM: Integrated Analysis of Genetic and Cellular Networks
UBM:遗传和细胞网络的综合分析
  • 批准号:
    0531898
  • 财政年份:
    2005
  • 资助金额:
    $ 21.5万
  • 项目类别:
    Continuing Grant
Topics in Finite and Infinite Dimensional Random Dynamical Systems
有限和无限维随机动力系统主题
  • 批准号:
    0401708
  • 财政年份:
    2004
  • 资助金额:
    $ 21.5万
  • 项目类别:
    Continuing Grant
Theory and Applications for Infinite Dimensional Dynamical Systems
无限维动力系统的理论与应用
  • 批准号:
    0200961
  • 财政年份:
    2002
  • 资助金额:
    $ 21.5万
  • 项目类别:
    Continuing Grant
Topics in Infinite Dimensional Dynamical Systems
无限维动力系统主题
  • 批准号:
    0331290
  • 财政年份:
    2002
  • 资助金额:
    $ 21.5万
  • 项目类别:
    Continuing Grant
Discrete and continuous nonlocal evolution equations and applications
离散和连续非局部演化方程及应用
  • 批准号:
    0224048
  • 财政年份:
    2002
  • 资助金额:
    $ 21.5万
  • 项目类别:
    Standard Grant
Discrete and continuous nonlocal evolution equations and applications
离散和连续非局部演化方程及应用
  • 批准号:
    9974340
  • 财政年份:
    1999
  • 资助金额:
    $ 21.5万
  • 项目类别:
    Standard Grant
Topics in Infinite Dimensional Dynamical Systems
无限维动力系统主题
  • 批准号:
    9970894
  • 财政年份:
    1999
  • 资助金额:
    $ 21.5万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Topics in Abstract, Applied, and Computational Harmonic Analysis
合作研究:抽象、应用和计算谐波分析主题
  • 批准号:
    2205852
  • 财政年份:
    2022
  • 资助金额:
    $ 21.5万
  • 项目类别:
    Standard Grant
Collaborative Research: SBP: Scientific topics and careers at the intersection: an algorithmic approach
合作研究:SBP:交叉点上的科学主题和职业:算法方法
  • 批准号:
    2152288
  • 财政年份:
    2022
  • 资助金额:
    $ 21.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Topics in Abstract, Applied, and Computational Harmonic Analysis
合作研究:抽象、应用和计算谐波分析主题
  • 批准号:
    2205771
  • 财政年份:
    2022
  • 资助金额:
    $ 21.5万
  • 项目类别:
    Standard Grant
Collaborative Research: SBP: Scientific topics and careers at the intersection: an algorithmic approach
合作研究:SBP:交叉点上的科学主题和职业:算法方法
  • 批准号:
    2152303
  • 财政年份:
    2022
  • 资助金额:
    $ 21.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Interactive Online Support for Open-Ended Problem Solving Spanning Science Practices and Domain Topics
协作研究:跨科学实践和领域主题的开放式问题解决的交互式在线支持
  • 批准号:
    1726699
  • 财政年份:
    2017
  • 资助金额:
    $ 21.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Interactive Online Support for Open-Ended Problem Solving Spanning Science Practices and Domain Topics
协作研究:跨科学实践和领域主题的开放式问题解决的交互式在线支持
  • 批准号:
    1726856
  • 财政年份:
    2017
  • 资助金额:
    $ 21.5万
  • 项目类别:
    Standard Grant
Collaborative Research: High-Dimensional Projection Tests and Related Topics
合作研究:高维投影测试及相关主题
  • 批准号:
    1512267
  • 财政年份:
    2015
  • 资助金额:
    $ 21.5万
  • 项目类别:
    Standard Grant
Collaborative Research: High-Dimensional Projection Tests and Related Topics
合作研究:高维投影测试及相关主题
  • 批准号:
    1512422
  • 财政年份:
    2015
  • 资助金额:
    $ 21.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Topics in Infinite-Dimensional and Stochastic Dynamical Systems
合作研究:无限维和随机动力系统主题
  • 批准号:
    1413603
  • 财政年份:
    2014
  • 资助金额:
    $ 21.5万
  • 项目类别:
    Continuing Grant
III: Medium: Collaborative Research: Closing the User-Model Loop for Understanding Topics in Large Document Collections
III:媒介:协作研究:关闭用户模型循环以理解大型文档集合中的主题
  • 批准号:
    1409287
  • 财政年份:
    2014
  • 资助金额:
    $ 21.5万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了