Theory and Applications for Infinite Dimensional Dynamical Systems

无限维动力系统的理论与应用

基本信息

  • 批准号:
    0200961
  • 负责人:
  • 金额:
    $ 16.8万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2002
  • 资助国家:
    美国
  • 起止时间:
    2002-06-01 至 2007-05-31
  • 项目状态:
    已结题

项目摘要

PI: Peter Bates, Brigham Young UniversityCo-PI: Keining Lu, Brigham Young UniversityDMS-0200961Abstract:This project will develop the geometrical theory of invariant manifolds and foliations for semiflows in Banach space with emphasis on how this can be applied to important areas of science. Of particular interest are how one may establish the existence of these structures knowing that good approximations exist in some sense. Applications which will be addressed include analysis of lattice dynamical systems, the existence of modulated waves in fluid models, the form and dynamics of vortices in superconducting materials, the form and dynamics of material phase boundaries, including those with random perturbations in the driving forces, and the development of good computational algorithms.Since most physical systems are highly complex, it is usually impossible to solve the equations which are proposed to describe and predict the relevant physical phenomena. Even if it were possible to solve one of these equations, the imprecision in measurement and our imperfect understanding of the actual physical laws may call into question the meaning of the solutions. This project will develop a theory whereby, under certain conditions, one can describe the nature of solutions and guarantee that the physical system behaves according to this description to a reasonable degree of accuracy. Special attention will be given to equations describing phenomena in material science, including phase transitions and superconductivity.
主要研究者:Peter Bates,杨百翰大学合作伙伴:Keining Lu,杨百翰大学DMS-0200961摘要:本项目将发展Banach空间中半流的不变流形和叶理的几何理论,重点是如何将其应用于重要的科学领域。特别感兴趣的是如何建立这些结构的存在,知道在某种意义上存在良好的近似。将涉及的应用包括晶格动力学系统的分析,流体模型中调制波的存在,超导材料中涡旋的形式和动力学,材料相边界的形式和动力学,包括驱动力中随机扰动的那些,以及良好的计算算法的发展。通常不可能求解提出来描述和预测相关物理现象的方程。即使有可能解出这些方程中的一个,测量的不精确性和我们对实际物理定律的不完全理解也可能使解的意义受到质疑。该项目将开发一种理论,在某些条件下,人们可以描述解决方案的性质,并保证物理系统的行为根据这种描述达到合理的准确度。将特别关注描述材料科学中的现象的方程,包括相变和超导性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Peter Bates其他文献

Surgical stabilization of acetabular injuries: approaches and methods
  • DOI:
    10.1016/j.mporth.2018.01.011
  • 发表时间:
    2018-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Jaikirty Rawal;Homa Arshad;Peter Bates
  • 通讯作者:
    Peter Bates
Outcomes of autologous chondrocyte transplantation (ACT) and autologous matrix-induced chondrogenesis (AMIC) in the hip: a systematic review and meta-analysis
Spinopelvic dissociation: have we finally got it right?
  • DOI:
    10.1016/j.spinee.2016.01.107
  • 发表时间:
    2016-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Ibraheim El-Daly;Syed Aftab;Peter Bates;Arun Ranganathan;Alexander Montgomery
  • 通讯作者:
    Alexander Montgomery
L’utilisation de bisphosphonates est-elle un facteur de risque de fractures périprothétiques atypiques ? Méta-analyse d’études de cohorte rétrospectives et revue systématique de la littérature actuelle
  • DOI:
    10.1016/j.rcot.2022.11.002
  • 发表时间:
    2023-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Pedro Ferreira;Peter Bates;Ahmed Daoub;Debashis Dass
  • 通讯作者:
    Debashis Dass
Is bisphosphonate use a risk factor for atypical periprosthetic/peri-implant fractures? – A metanalysis of retrospective cohort studies and systematic review of the current evidence
双膦酸盐的使用是否是假体周围/种植体周围非典型骨折的危险因素?——回顾性队列研究的荟萃分析和现有证据的系统综述

Peter Bates的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Peter Bates', 18)}}的其他基金

Collaborative Research: Topics in Infinite-Dimensional and Stochastic Dynamical Systems
合作研究:无限维和随机动力系统主题
  • 批准号:
    1413060
  • 财政年份:
    2014
  • 资助金额:
    $ 16.8万
  • 项目类别:
    Continuing Grant
Collaborative Research: Invariant Manifolds for Multiscale Stochastic Dynamical Systems
合作研究:多尺度随机动力系统的不变流形
  • 批准号:
    0908348
  • 财政年份:
    2009
  • 资助金额:
    $ 16.8万
  • 项目类别:
    Continuing Grant
Pan-American Advanced Studies Institute (PASI) on Differential Equations and Nonlinear Analysis; Mexico city-veracruz, Mexico, October 15-23, 2009
泛美高级研究所(PASI)微分方程和非线性分析;
  • 批准号:
    0921323
  • 财政年份:
    2009
  • 资助金额:
    $ 16.8万
  • 项目类别:
    Standard Grant
Midwest Quantitative Biology Conference
中西部定量生物学会议
  • 批准号:
    0609319
  • 财政年份:
    2006
  • 资助金额:
    $ 16.8万
  • 项目类别:
    Standard Grant
UBM: Integrated Analysis of Genetic and Cellular Networks
UBM:遗传和细胞网络的综合分析
  • 批准号:
    0531898
  • 财政年份:
    2005
  • 资助金额:
    $ 16.8万
  • 项目类别:
    Continuing Grant
Topics in Finite and Infinite Dimensional Random Dynamical Systems
有限和无限维随机动力系统主题
  • 批准号:
    0401708
  • 财政年份:
    2004
  • 资助金额:
    $ 16.8万
  • 项目类别:
    Continuing Grant
Topics in Infinite Dimensional Dynamical Systems
无限维动力系统主题
  • 批准号:
    0331290
  • 财政年份:
    2002
  • 资助金额:
    $ 16.8万
  • 项目类别:
    Continuing Grant
Discrete and continuous nonlocal evolution equations and applications
离散和连续非局部演化方程及应用
  • 批准号:
    0224048
  • 财政年份:
    2002
  • 资助金额:
    $ 16.8万
  • 项目类别:
    Standard Grant
Discrete and continuous nonlocal evolution equations and applications
离散和连续非局部演化方程及应用
  • 批准号:
    9974340
  • 财政年份:
    1999
  • 资助金额:
    $ 16.8万
  • 项目类别:
    Standard Grant
Topics in Infinite Dimensional Dynamical Systems
无限维动力系统主题
  • 批准号:
    9970894
  • 财政年份:
    1999
  • 资助金额:
    $ 16.8万
  • 项目类别:
    Continuing Grant

相似国自然基金

Applications of AI in Market Design
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研 究基金项目
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
  • 批准号:
    12126512
  • 批准年份:
    2021
  • 资助金额:
    12.0 万元
  • 项目类别:
    数学天元基金项目

相似海外基金

New developments in infinite dimensional stochastic analysis based on constructions of spaces of generalized functionals and applications to quantum information theory
基于广义泛函空间构造的无限维随机分析新进展及其在量子信息论中的应用
  • 批准号:
    19K03592
  • 财政年份:
    2019
  • 资助金额:
    $ 16.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Infinite-dimensional Lie theory and its applications
无限维李理论及其应用
  • 批准号:
    RGPIN-2014-05851
  • 财政年份:
    2018
  • 资助金额:
    $ 16.8万
  • 项目类别:
    Discovery Grants Program - Individual
Infinite-dimensional Lie theory and its applications
无限维李理论及其应用
  • 批准号:
    RGPIN-2014-05851
  • 财政年份:
    2017
  • 资助金额:
    $ 16.8万
  • 项目类别:
    Discovery Grants Program - Individual
Infinite-dimensional Lie theory and its applications
无限维李理论及其应用
  • 批准号:
    RGPIN-2014-05851
  • 财政年份:
    2016
  • 资助金额:
    $ 16.8万
  • 项目类别:
    Discovery Grants Program - Individual
New development of theory of generalized functionals, an infinite dimensional stochastic analysis and applications to theory of quantum dynamical system
广义泛函理论新进展、无限维随机分析及其在量子动力系统理论中的应用
  • 批准号:
    15K04940
  • 财政年份:
    2015
  • 资助金额:
    $ 16.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Applications of Galois cohomology to infinite dimensional Lie theory
伽罗瓦上同调在无限维李理论中的应用
  • 批准号:
    9343-2011
  • 财政年份:
    2015
  • 资助金额:
    $ 16.8万
  • 项目类别:
    Discovery Grants Program - Individual
Infinite-dimensional Lie theory and its applications
无限维李理论及其应用
  • 批准号:
    RGPIN-2014-05851
  • 财政年份:
    2015
  • 资助金额:
    $ 16.8万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of Galois cohomology to infinite dimensional Lie theory
伽罗瓦上同调在无限维李理论中的应用
  • 批准号:
    9343-2011
  • 财政年份:
    2014
  • 资助金额:
    $ 16.8万
  • 项目类别:
    Discovery Grants Program - Individual
Infinite-dimensional Lie theory and its applications
无限维李理论及其应用
  • 批准号:
    RGPIN-2014-05851
  • 财政年份:
    2014
  • 资助金额:
    $ 16.8万
  • 项目类别:
    Discovery Grants Program - Individual
Set theory, infinite combinatrics and applications
集合论、无限组合学及其应用
  • 批准号:
    170442-2009
  • 财政年份:
    2013
  • 资助金额:
    $ 16.8万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了