Topics in Infinite Dimensional Dynamical Systems
无限维动力系统主题
基本信息
- 批准号:9970894
- 负责人:
- 金额:$ 16.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1999
- 资助国家:美国
- 起止时间:1999-06-01 至 2003-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractBates/LuGeometrical theory of infinite-dimensional dynamical systems will be developed. Included here are conditions giving the existence and persistence of invariant manifolds and foliations. These will be used to describe global qualitative behavior of trajectories and to establish conditions which guarantee structural stability. Applications of this theory to topics such as lattice dynamics, cellular neural networks, nonlinear parabolic partial differential equations and some nonlinear hyperbolic partial differential equations will be considered. Efficient computational approaches to simulate some of these will be sought, based upon the geometrical theory developed.Since most physical systems are highly complex, it is usually impossible to solve the equations which are proposed to describe and predict the relevant physical phenomena. Even if it were possible to solve one of these equations, the imprecision in measurement and our imperfect understanding of the actual physical laws may call into question the meaning of the solutions. This project will develop a theory whereby, under certain conditions, one can describe the nature of solutions and guarantee that the physical system behaves according to this description to a reasonable degree of accuracy. Special attention will be given to equations describing phenomena in material science, including phase transitions and superconductivity.
摘要Bates/Lu型无限维动力系统几何理论将得到发展。这里包括给出不变流形和叶的存在和持久性的条件。这些将被用来描述轨迹的全球质量行为,并建立保证结构稳定性的条件。这一理论在格子动力学、细胞神经网络、非线性抛物型偏微分方程组和一些非线性双曲型偏微分方程中的应用将被考虑。基于发展起来的几何理论,人们将寻求有效的计算方法来模拟其中的一些现象。由于大多数物理系统是高度复杂的,通常不可能求解提出的描述和预测相关物理现象的方程。即使有可能解出这些方程中的一个,测量的不精确度和我们对实际物理定律的不完全理解也可能会让人质疑这些解的意义。这个项目将开发一种理论,在某些条件下,一个人可以描述解决方案的性质,并保证物理系统按照这种描述以合理的精度运行。将特别关注描述材料科学现象的方程,包括相变和超导。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter Bates其他文献
Surgical stabilization of acetabular injuries: approaches and methods
- DOI:
10.1016/j.mporth.2018.01.011 - 发表时间:
2018-04-01 - 期刊:
- 影响因子:
- 作者:
Jaikirty Rawal;Homa Arshad;Peter Bates - 通讯作者:
Peter Bates
Outcomes of autologous chondrocyte transplantation (ACT) and autologous matrix-induced chondrogenesis (AMIC) in the hip: a systematic review and meta-analysis
- DOI:
10.1186/s13018-025-05862-5 - 发表时间:
2025-05-19 - 期刊:
- 影响因子:2.800
- 作者:
Thomas Walker;Maximilian Dewhurst;Peter Bates - 通讯作者:
Peter Bates
Spinopelvic dissociation: have we finally got it right?
- DOI:
10.1016/j.spinee.2016.01.107 - 发表时间:
2016-04-01 - 期刊:
- 影响因子:
- 作者:
Ibraheim El-Daly;Syed Aftab;Peter Bates;Arun Ranganathan;Alexander Montgomery - 通讯作者:
Alexander Montgomery
L’utilisation de bisphosphonates est-elle un facteur de risque de fractures périprothétiques atypiques ? Méta-analyse d’études de cohorte rétrospectives et revue systématique de la littérature actuelle
- DOI:
10.1016/j.rcot.2022.11.002 - 发表时间:
2023-04-01 - 期刊:
- 影响因子:
- 作者:
Pedro Ferreira;Peter Bates;Ahmed Daoub;Debashis Dass - 通讯作者:
Debashis Dass
Is bisphosphonate use a risk factor for atypical periprosthetic/peri-implant fractures? – A metanalysis of retrospective cohort studies and systematic review of the current evidence
双膦酸盐的使用是否是假体周围/种植体周围非典型骨折的危险因素?——回顾性队列研究的荟萃分析和现有证据的系统综述
- DOI:
10.1016/j.otsr.2022.103475 - 发表时间:
2023-04-01 - 期刊:
- 影响因子:2.200
- 作者:
Pedro Ferreira;Peter Bates;Ahmed Daoub;Debashis Dass - 通讯作者:
Debashis Dass
Peter Bates的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter Bates', 18)}}的其他基金
Collaborative Research: Topics in Infinite-Dimensional and Stochastic Dynamical Systems
合作研究:无限维和随机动力系统主题
- 批准号:
1413060 - 财政年份:2014
- 资助金额:
$ 16.2万 - 项目类别:
Continuing Grant
Collaborative Research: Invariant Manifolds for Multiscale Stochastic Dynamical Systems
合作研究:多尺度随机动力系统的不变流形
- 批准号:
0908348 - 财政年份:2009
- 资助金额:
$ 16.2万 - 项目类别:
Continuing Grant
Pan-American Advanced Studies Institute (PASI) on Differential Equations and Nonlinear Analysis; Mexico city-veracruz, Mexico, October 15-23, 2009
泛美高级研究所(PASI)微分方程和非线性分析;
- 批准号:
0921323 - 财政年份:2009
- 资助金额:
$ 16.2万 - 项目类别:
Standard Grant
Midwest Quantitative Biology Conference
中西部定量生物学会议
- 批准号:
0609319 - 财政年份:2006
- 资助金额:
$ 16.2万 - 项目类别:
Standard Grant
UBM: Integrated Analysis of Genetic and Cellular Networks
UBM:遗传和细胞网络的综合分析
- 批准号:
0531898 - 财政年份:2005
- 资助金额:
$ 16.2万 - 项目类别:
Continuing Grant
Topics in Finite and Infinite Dimensional Random Dynamical Systems
有限和无限维随机动力系统主题
- 批准号:
0401708 - 财政年份:2004
- 资助金额:
$ 16.2万 - 项目类别:
Continuing Grant
Theory and Applications for Infinite Dimensional Dynamical Systems
无限维动力系统的理论与应用
- 批准号:
0200961 - 财政年份:2002
- 资助金额:
$ 16.2万 - 项目类别:
Continuing Grant
Topics in Infinite Dimensional Dynamical Systems
无限维动力系统主题
- 批准号:
0331290 - 财政年份:2002
- 资助金额:
$ 16.2万 - 项目类别:
Continuing Grant
Discrete and continuous nonlocal evolution equations and applications
离散和连续非局部演化方程及应用
- 批准号:
0224048 - 财政年份:2002
- 资助金额:
$ 16.2万 - 项目类别:
Standard Grant
Discrete and continuous nonlocal evolution equations and applications
离散和连续非局部演化方程及应用
- 批准号:
9974340 - 财政年份:1999
- 资助金额:
$ 16.2万 - 项目类别:
Standard Grant
相似海外基金
Equivariant index theory of infinite-dimensional manifolds and related topics
无限维流形等变指数理论及相关主题
- 批准号:
23K12970 - 财政年份:2023
- 资助金额:
$ 16.2万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Topics in infinite dimensional algebra
无限维代数主题
- 批准号:
2301871 - 财政年份:2023
- 资助金额:
$ 16.2万 - 项目类别:
Continuing Grant
Collaborative Research: Topics in Infinite-Dimensional and Stochastic Dynamical Systems
合作研究:无限维和随机动力系统主题
- 批准号:
1413603 - 财政年份:2014
- 资助金额:
$ 16.2万 - 项目类别:
Continuing Grant
Collaborative Research: Topics in Infinite-Dimensional and Stochastic Dynamical Systems
合作研究:无限维和随机动力系统主题
- 批准号:
1413060 - 财政年份:2014
- 资助金额:
$ 16.2万 - 项目类别:
Continuing Grant
Representation theory and measure theory of infinite-dimensional groups and related topics
无限维群的表示论和测度论及相关话题
- 批准号:
16540162 - 财政年份:2004
- 资助金额:
$ 16.2万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Topics in Finite and Infinite Dimensional Random Dynamical Systems
有限和无限维随机动力系统主题
- 批准号:
0401708 - 财政年份:2004
- 资助金额:
$ 16.2万 - 项目类别:
Continuing Grant
Representations of infinite-dimensional Lie algebras and related topics
无限维李代数的表示及相关主题
- 批准号:
0303529 - 财政年份:2003
- 资助金额:
$ 16.2万 - 项目类别:
Continuing Grant
Infinite Dimensional Representations and Related Topics
无限维表示及相关主题
- 批准号:
14540167 - 财政年份:2002
- 资助金额:
$ 16.2万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Topics in Infinite Dimensional Dynamical Systems
无限维动力系统主题
- 批准号:
0331290 - 财政年份:2002
- 资助金额:
$ 16.2万 - 项目类别:
Continuing Grant
Infinite Dimensional Representations and Related Topics
无限维表示及相关主题
- 批准号:
12640164 - 财政年份:2000
- 资助金额:
$ 16.2万 - 项目类别:
Grant-in-Aid for Scientific Research (C)