Kinetic Pathways to Formation and Self-Organization of Quantum Dots
量子点形成和自组织的动力学途径
基本信息
- 批准号:0402276
- 负责人:
- 金额:$ 33.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-07-15 至 2008-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Proposal: DMS-0402276PI: Russell E CaflischInstitution: University of California - Los AngelesTitle: Kinetic Pathways to Formation and Self-Organization of Quantum DotsABSTRACTQuantum dots are nanoscale structures on a crystalline surface that can be produced by self-assembly during epitaxial growth. Because of their novel electronic and optical properties, many technological applications have been proposed for quantum dots. A key requirement for these applications is the ability to predict and control the geometry and material properties of both single dots and arrays of dots. The kinetics pathways to formation and organization of quantum dots are important because the spacing and regularity of a quantum-dot array is largely determined at the early stages of their growth. The most common growth mode for quantum dots is Stranski-Krastanov (SK), in which growth of a wetting layer precedes the three-dimensional islanding that leads to quantum dots. Computations of epitaxial growth have been surprisingly unsuccessful in simulating SK growth, and the reasons for this failure are not well understood. This is a major open question in computational material science; its resolution is the principal aim of this proposal. Strain due to lattice mismatch between the substrate and film is an essential ingredient in SK growth and self-assembly of quantum dots. Inclusion of strain in models for material growth and device properties has proved to be difficult and computationally complex due to the short times scales of atomistic processes and the long-range influence of strain.This proposal is aimed at modeling and predicting the formation and morphological evolution of quantum dots, which are self-assembled structures proposed for future use in microelectronics ("beyond CMOS"), optics and spintronics applications. This includes both modeling of the microscopic physical processes during thin film growth as well as the development and numerical implementation of new algorithms in applied mathematics. The result will be an effective and robust simulation method for strained epitaxial growth that includes atomistic strain, anisotropic diffusion, three-dimensionality, alloying, and surface chemistry. The broader impacts of this project include the injection of applied mathematics into materials science and improved methods for design and growth of quantum dot arrays for opto-electronic applications.This award is co-funded by the Applied Mathematics program of the Division of Mathematical Sciences and the Materials Theory program of the Division of Materials Research under the umbrella of the NSF-wide Mathematical Sciences Priority Area.
提案:DMS-0402276 PI:Russell E Caflisch机构:加州-洛杉矶大学标题:量子点形成和自组织的动力学途径摘要量子点是晶体表面上的纳米级结构,可以在外延生长过程中通过自组装产生。由于量子点具有新颖的电学和光学性质,人们已经提出了许多量子点的技术应用。这些应用的关键要求是能够预测和控制单个点和点阵列的几何形状和材料特性。量子点的形成和组织的动力学途径是重要的,因为量子点阵列的间距和规则性在很大程度上是在其生长的早期阶段确定的。量子点最常见的生长模式是Stranski-Krastanov(SK),其中润湿层的生长先于导致量子点的三维岛化。外延生长的计算在模拟SK生长方面令人惊讶地不成功,并且这种失败的原因还没有很好地理解。这是计算材料科学中的一个主要的开放问题;它的解决方案是本提案的主要目标。由于衬底和薄膜之间的晶格失配引起的应变是SK生长和量子点自组装的重要因素。量子点是一种自组装结构,在微电子学中有着广泛的应用前景(“超越CMOS”),光学和自旋电子学应用。这包括薄膜生长过程中微观物理过程的建模以及应用数学中新算法的开发和数值实现。其结果将是一个有效的和强大的模拟方法,应变外延生长,包括原子应变,各向异性扩散,三维,合金化,和表面化学。该项目的更广泛的影响包括将应用数学注入材料科学,以及改进用于光电应用的量子点阵列的设计和生长方法。该奖项由数学科学部的应用数学项目和材料研究部的材料理论项目共同资助,该项目属于NSF范围内的数学科学优先领域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Russel Caflisch其他文献
Russel Caflisch的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Russel Caflisch', 18)}}的其他基金
IRES: Research in Industrial Projects for Students (RIPS) - Hong Kong
IRES:学生工业项目研究 (RIPS) - 香港
- 批准号:
1129816 - 财政年份:2012
- 资助金额:
$ 33.81万 - 项目类别:
Standard Grant
Institute for Pure and Applied Mathematics
纯粹与应用数学研究所
- 批准号:
0931852 - 财政年份:2010
- 资助金额:
$ 33.81万 - 项目类别:
Continuing Grant
IRES: International Research in Industrial Projects for Students (Beijing)
IRES:学生工业项目国际研究(北京)
- 批准号:
0652051 - 财政年份:2007
- 资助金额:
$ 33.81万 - 项目类别:
Standard Grant
Collaborative Research: Numerics and Analysis of Singularities for the Euler Equations
合作研究:欧拉方程的数值和奇异性分析
- 批准号:
0707557 - 财政年份:2007
- 资助金额:
$ 33.81万 - 项目类别:
Continuing Grant
Institute for Pure and Applied Mathematics Renewal
纯粹与应用数学更新研究所
- 批准号:
0439872 - 财政年份:2005
- 资助金额:
$ 33.81万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularity Formation for the Three-Dimensional Euler Equations and Related Problems
FRG:协作研究:三维欧拉方程的奇异性形成及相关问题
- 批准号:
0354488 - 财政年份:2004
- 资助金额:
$ 33.81万 - 项目类别:
Standard Grant
Modeling and Simulation for Epitaxial Growth
外延生长的建模与仿真
- 批准号:
0074152 - 财政年份:2000
- 资助金额:
$ 33.81万 - 项目类别:
Standard Grant
Kinetic Monte Carlo Methods for Epitaxial Growth
外延生长的动力学蒙特卡罗方法
- 批准号:
0072919 - 财政年份:2000
- 资助金额:
$ 33.81万 - 项目类别:
Standard Grant
Mathematical Sciences: VIP/Virtual Integrated Prototyping for Epitaxial Growth
数学科学:用于外延生长的 VIP/虚拟集成原型制作
- 批准号:
9615854 - 财政年份:1997
- 资助金额:
$ 33.81万 - 项目类别:
Cooperative Agreement
Mathematical Sciences: Singularities in Vortical Flows and Dispersive Systems
数学科学:涡流和色散系统中的奇点
- 批准号:
9623087 - 财政年份:1996
- 资助金额:
$ 33.81万 - 项目类别:
Continuing Grant
相似海外基金
CAREER: Measurement of Photochemical Mechanisms, Rates, and Pathways of Radical Formation in Complex Organic Compounds
职业:测量复杂有机化合物中自由基形成的光化学机制、速率和途径
- 批准号:
2340926 - 财政年份:2024
- 资助金额:
$ 33.81万 - 项目类别:
Continuing Grant
Investigation of Potential Pathways for the Formation of Lithium Rich Giants
富锂巨星形成的潜在途径研究
- 批准号:
567940-2022 - 财政年份:2022
- 资助金额:
$ 33.81万 - 项目类别:
Postgraduate Scholarships - Doctoral
Beyond ephrins: unbiased discovery of novel signaling pathways regulating topographic map formation and maturation in vivo.
超越肝配蛋白:公正地发现调节体内地形图形成和成熟的新型信号通路。
- 批准号:
10330851 - 财政年份:2021
- 资助金额:
$ 33.81万 - 项目类别:
Dissecting the signaling pathways that regulate biomolecular condensate formation
剖析调节生物分子凝聚体形成的信号通路
- 批准号:
562252-2021 - 财政年份:2021
- 资助金额:
$ 33.81万 - 项目类别:
University Undergraduate Student Research Awards
Atypical Formation of Fiber Pathways and Cortical Folding in the Brain
大脑中纤维通路和皮质折叠的非典型形成
- 批准号:
10417197 - 财政年份:2021
- 资助金额:
$ 33.81万 - 项目类别:
Atypical Formation of Fiber Pathways and Cortical Folding in the Brain
大脑中纤维通路和皮质折叠的非典型形成
- 批准号:
10653693 - 财政年份:2021
- 资助金额:
$ 33.81万 - 项目类别:
Delineating Nitroxyl Formation Pathways from Chloramines and Free Chlorine and Cascades of Reactive Nitrogen Species to N-Nitrosamines and N-Nitramines
描述从氯胺和游离氯以及活性氮级联到 N-亚硝胺和 N-硝胺的硝酰基形成途径
- 批准号:
2034481 - 财政年份:2020
- 资助金额:
$ 33.81万 - 项目类别:
Standard Grant
Dissection of pathways regulating meiotic crossover formation
减数分裂交叉形成调节途径的剖析
- 批准号:
419182 - 财政年份:2020
- 资助金额:
$ 33.81万 - 项目类别:
Operating Grants
"Establishing Pathways for Endothelial Support of Bone Formation with SLIT3"
“利用 SLIT3 建立内皮支持骨形成的途径”
- 批准号:
10571692 - 财政年份:2020
- 资助金额:
$ 33.81万 - 项目类别:
The effect of acute exercise on formation process of visual perception/cognition: Verification from the viewpoint of parallel visual information pathways
急性运动对视知觉/认知形成过程的影响:平行视觉信息通路视角的验证
- 批准号:
20K19569 - 财政年份:2020
- 资助金额:
$ 33.81万 - 项目类别:
Grant-in-Aid for Early-Career Scientists