Research in Statistics
统计学研究
基本信息
- 批准号:0402824
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-10-01 至 2009-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In this project, the principle investigator (PI) proposesresearch on four important topics aimed to develop methodsof statistical inference and model diagnostics in cases ofcorrelated observations. These topics are: (i) partiallyobserved information and inference about non-Gaussianlinear mixed models; (ii) iterative weighted least squaresprocedures for analysis of longitudinal data; (iii) A testof global maximum for dependent observations; and (iv)generalized linear mixed model diagnostics. Linear mixedmodels are widely used in practice for correlated observations.A typical assumption regarding these models is that theobservations are normally distributed. However, the normalityassumption is likely to be violated in practice. It is known thatnormality based methods such as REML still produce consistentestimators even if normality fails. However, the estimationof standard errors of these estimators is complicated, becausefor non-Gaussian data the asymptotic covariance matrix of theGaussian estimator involves additional unknown parameters.Project (i) aims to completely solve this long-standing problemof practical interest. Furthermore, project (ii) proposes aniterative weighted least squares procedure for computingefficient estimators of the regression coefficients in linearmodels for longitudinal data analysis and studies its properties.Project (iii) aims to extend a method developed in the i.i.d.case for checking whether a root to the likelihood equationcorresponds to the global maximum of the likelihood function.Project (iv) develops goodness-of-fit tests and methods ofinformal model checking for generalized linear mixed models.Correlated responses are often encountered in practice. Forexample, in medical studies repeated measures are often collectedfrom the same individuals over time. It would be reasonable toassume that correlations exist among the observations from thesame individual. Linear and generalized linear mixed models aretwo important classes of statistical models widely used in casesof correlated observations. For linear mixed models methods ofinference have been developed, but mostly under the assumptionthat the observations are normal (or Gaussian). However, thenormality assumption is likely to be violated in practice. ThePI aims to develop a powerful method for inference aboutnon-Gaussian linear mixed models. For generalized linear mixedmodels, the PI proposes to develop methods of model checkingthat fills an important gap in the applications of these models.The methods developed are likely to have impact in other fieldsof statistics as well as in fields such as biomedical research,genetics, biology, economics, education and social science.
在这个项目中,主要研究者(PI)提出了四个重要主题的研究,旨在开发相关观测情况下的统计推断和模型诊断方法。这些主题是:(i)非高斯线性混合模型的部分观测信息和推断;(ii)纵向数据分析的迭代加权最小二乘法;(iii)相依观测的全局最大值检验;(iv)广义线性混合模型诊断。线性混合模型在相关观测中有着广泛的应用,其典型假设是观测值服从正态分布。然而,正常假设在实践中很可能被违反。众所周知,基于正态性的方法,如REML,即使正态性失败,仍然会产生一致性检验。然而,对于非高斯数据,由于高斯估计的渐近协方差矩阵包含了额外的未知参数,因此这些估计的标准误差的估计是复杂的,Project(i)旨在彻底解决这一长期存在的实际问题。此外,项目(ii)提出了一种计算纵向数据分析线性模型中回归系数有效估计的迭代加权最小二乘方法,并研究了它的性质.项目(iii)旨在推广www.example.com上提出的检验似然方程的根是否与似然函数的全局最大值相对应的方法.项目(iv)发展了一种检验似然方程的根是否与似然函数的全局最大值相对应的方法.i.i.d.case例如,在医学研究中,随着时间的推移,经常从同一个人那里收集重复的测量结果。假设来自同一个体的观察结果之间存在相关性是合理的。线性和广义线性混合模型是两类重要的统计模型,广泛应用于相关观测的情形。对于线性混合模型,已经开发了参考方法,但大多数是在假设观测值是正态(或高斯)的情况下。然而,在实践中,这一假设很可能被违背。PI旨在开发一种强大的非高斯线性混合模型推理方法。对于广义线性混合模型,PI建议开发模型检查方法,填补了这些模型应用中的一个重要空白。开发的方法可能会对其他统计领域以及生物医学研究,遗传学,生物学,经济学,教育和社会科学等领域产生影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jiming Jiang其他文献
A Sensor Network Architecture for Urban Traffic State Estimation with Mixed Eulerian/Lagrangian Sensing Based on Distributed Computing
基于分布式计算的混合欧拉/拉格朗日传感的城市交通状态估计传感器网络架构
- DOI:
10.1007/978-3-319-04891-8_13 - 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
E. Canepa;Enas Odat;Ahmad H. Dehwah;M. Mousa;Jiming Jiang;C. Claudel - 通讯作者:
C. Claudel
Invisible fence methods and the identification of differentially expressed gene sets
隐形栅栏方法和差异表达基因集的识别
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Jiming Jiang;Thuan Nguyen;J. Rao - 通讯作者:
J. Rao
The subset argument and consistency of MLE in GLMM: Answer to an open problem and beyond
GLMM 中 MLE 的子集论证和一致性:对开放问题及其他问题的回答
- DOI:
10.1214/13-aos1084 - 发表时间:
2013 - 期刊:
- 影响因子:4.5
- 作者:
Jiming Jiang - 通讯作者:
Jiming Jiang
Genome-widemapping of cytosine methylation revealed dynamic DNA methylation patterns associated with genes and centromeres in rice. Plant Journal
胞嘧啶甲基化的全基因组图谱揭示了与水稻基因和着丝粒相关的动态 DNA 甲基化模式。
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Huihuang Yan;Shinji Kikuchi;Pavel Neumann;Wenli Zhang;Yufeng Wu;Feng Chen;Jiming Jiang - 通讯作者:
Jiming Jiang
A nonlinear Gauss-Seidel algorithm for inference about GLMM
用于 GLMM 推理的非线性 Gauss-Seidel 算法
- DOI:
10.1007/s001800000030 - 发表时间:
2000 - 期刊:
- 影响因子:1.3
- 作者:
Jiming Jiang - 通讯作者:
Jiming Jiang
Jiming Jiang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jiming Jiang', 18)}}的其他基金
Collaborative Research: Modernizing Mixed Model Prediction
合作研究:现代化混合模型预测
- 批准号:
2210569 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Subject-level Prediction and Application
合作研究:学科级预测与应用
- 批准号:
1914465 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Standard Grant
Development of a genome-wide enhancer map in Arabidopsis thaliana
拟南芥全基因组增强子图谱的开发
- 批准号:
1822254 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Continuing Grant
Misspecified Mixed Model Analysis: Theory and Application
错误指定的混合模型分析:理论与应用
- 批准号:
1713120 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Prediction and Model Selection for New Challenging Problems with Complex Data+
协作研究:复杂数据新挑战性问题的预测和模型选择
- 批准号:
1510219 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Standard Grant
Development of a genome-wide enhancer map in Arabidopsis thaliana
拟南芥全基因组增强子图谱的开发
- 批准号:
1412948 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Continuing Grant
Collaborative Research: Best Predictive Small Area Estimation
协作研究:最佳预测小区域估计
- 批准号:
1121794 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Standard Grant
Epigenetic Modifications of the Centromeric Chromatin in Rice
水稻着丝粒染色质的表观遗传修饰
- 批准号:
0923640 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Standard Grant
Fence Methods for Complex Model Selection Problems
复杂模型选择问题的栅栏方法
- 批准号:
0806127 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Standard Grant
Comparative Genomics of A Rice Centromere
水稻着丝粒的比较基因组学
- 批准号:
0603927 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Continuing Grant
相似海外基金
REU Site: DRUMS Directed Research for Undergraduates in Math and Statistics
REU 网站:DRUMS 为数学和统计学本科生指导的研究
- 批准号:
2349611 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Conference: The 2024 Joint Research Conference on Statistics in Quality, Industry, and Technology (JRC 2024) - Data Science and Statistics for Industrial Innovation
会议:2024年质量、工业和技术统计联合研究会议(JRC 2024)——数据科学与统计促进产业创新
- 批准号:
2404998 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Advances in the Theory and Practice of Non-Euclidean Statistics
合作研究:非欧几里得统计理论与实践的进展
- 批准号:
2311058 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Conference: SRCOS Summer Research Conference in Statistics and Biostatistics
会议:SRCOS 统计和生物统计学夏季研究会议
- 批准号:
2327635 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Conference: Quality and Productivity Research Conference - Statistics, Deep Learning, and the People Side of Process
会议:质量和生产力研究会议 - 统计、深度学习和流程的人员方面
- 批准号:
2312733 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: AMPS: Rare Events in Power Systems: Novel Mathematics, Statistics and Algorithms.
合作研究:AMPS:电力系统中的罕见事件:新颖的数学、统计和算法。
- 批准号:
2229011 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Advances in the Theory and Practice of Non-Euclidean Statistics
合作研究:非欧几里得统计理论与实践的进展
- 批准号:
2311059 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
REU Site: Research for Undergraduates Summer Institute of Statistics at Indiana University
REU 网站:印第安纳大学本科生暑期统计研究所研究
- 批准号:
2244093 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
REU Site: Research Experiences for Undergraduates in Industrial Mathematics and Statistics
REU 网站:工业数学和统计学本科生的研究经验
- 批准号:
2244306 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Generating Research Opportunities Within Statistics at Fred Hutch (GROWS@FredHutch)
在 Fred Hutch 的统计领域创造研究机会 (GROWS@FredHutch)
- 批准号:
10627415 - 财政年份:2023
- 资助金额:
-- - 项目类别: