Fence Methods for Complex Model Selection Problems
复杂模型选择问题的栅栏方法
基本信息
- 批准号:0806127
- 负责人:
- 金额:$ 12.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-09-01 至 2011-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Many model search strategies involve trading off model fit with modelcomplexity in a penalized goodness of fit measure. Asymptotic propertiesfor these types of procedures in some conventional situations, such asregression and ARMA time series have been studied. Yet, such strategiesdo not always translate into good finite sample performance. Furthermore,such standard model selection procedures encounter difficulties fornonconventional model selection problems as well. This project aims atdevelopments of a new model selection strategy, called fence methods, infollowing four major areas of methodology research and applications: (i)development of adaptive fence methods for high dimensional and complexmodel selection problems using the idea of restricted maximum likelihood;(ii) development of data adaptive fence methods for nonparametric modelselection problems such as penalized smoothing spline estimation; (iii)development of fence methods for quantitative trait loci (QTL) mapping;and (iv) development of user-friendly standalone software for implementingthe fence methods.The fence idea is generally based on building a statistical fence, orbarrier, to carefully eliminate incorrect models. This is done bydetermining which models are within variation of a goodness-of-fitmeasure of an anchor model. Once the fence is constructed, the optimalmodel is selected from amongst those within the fence according toa criterion which can be made flexible. For example, the criterion canincorporate scientific or economic concerns. The adaptive fence methodmay be viewed as comparing signals with noises to come out with an optimaldecision supported by the data. Given such a wide spectrum of models thatcan be handled, the range of applications seems enormous. Of particularinterests are applications in human genetics, medical research and surveys.To facilitate such translational research, the investigators plan to freelydisseminate available computer software to implement the fence methods.
许多模型搜索策略涉及在惩罚的拟合优度度量中权衡模型拟合与模型复杂性。在一些常规的情况下,如回归和阿尔马时间序列,这类程序的渐近性质进行了研究。然而,这种策略并不总是转化为良好的有限样本性能。此外,这种标准的模型选择程序遇到困难fornonconventional模型选择问题,以及。本项目的目标是发展一种新的模型选择策略-栅栏方法,主要包括以下四个方面的方法学研究和应用:(i)利用限制极大似然的思想发展高维复杂模型选择问题的自适应栅栏方法,(ii)发展非参数模型选择问题如惩罚光滑样条估计的数据自适应栅栏方法,(iii)发展非参数模型选择问题的数据自适应栅栏方法,(iv)发展非参数模型选择问题的数据自适应栅栏方法(iii)发展数量性状基因座(QTL)定位的栅栏方法;(iv)发展用户友好的独立软件来实施栅栏方法栅栏的想法通常是建立一个统计栅栏或障碍,以仔细消除不正确的模型。这是通过确定哪些模型在锚模型的拟合优度度量的变化内来完成的。一旦栅栏被构建,根据可以灵活的标准从栅栏内的那些模型中选择最优模型。例如,该标准可以包含科学或经济方面的考虑。自适应栅栏法可以看作是将信号与噪声进行比较,以得出由数据支持的最优决策。考虑到可以处理的模型范围如此之广,应用范围似乎是巨大的。特别感兴趣的是在人类遗传学、医学研究和调查中的应用。为了促进这种转化研究,研究人员计划免费传播现有的计算机软件来实施栅栏方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jiming Jiang其他文献
A Sensor Network Architecture for Urban Traffic State Estimation with Mixed Eulerian/Lagrangian Sensing Based on Distributed Computing
基于分布式计算的混合欧拉/拉格朗日传感的城市交通状态估计传感器网络架构
- DOI:
10.1007/978-3-319-04891-8_13 - 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
E. Canepa;Enas Odat;Ahmad H. Dehwah;M. Mousa;Jiming Jiang;C. Claudel - 通讯作者:
C. Claudel
Invisible fence methods and the identification of differentially expressed gene sets
隐形栅栏方法和差异表达基因集的识别
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Jiming Jiang;Thuan Nguyen;J. Rao - 通讯作者:
J. Rao
The subset argument and consistency of MLE in GLMM: Answer to an open problem and beyond
GLMM 中 MLE 的子集论证和一致性:对开放问题及其他问题的回答
- DOI:
10.1214/13-aos1084 - 发表时间:
2013 - 期刊:
- 影响因子:4.5
- 作者:
Jiming Jiang - 通讯作者:
Jiming Jiang
Genome-widemapping of cytosine methylation revealed dynamic DNA methylation patterns associated with genes and centromeres in rice. Plant Journal
胞嘧啶甲基化的全基因组图谱揭示了与水稻基因和着丝粒相关的动态 DNA 甲基化模式。
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Huihuang Yan;Shinji Kikuchi;Pavel Neumann;Wenli Zhang;Yufeng Wu;Feng Chen;Jiming Jiang - 通讯作者:
Jiming Jiang
A nonlinear Gauss-Seidel algorithm for inference about GLMM
用于 GLMM 推理的非线性 Gauss-Seidel 算法
- DOI:
10.1007/s001800000030 - 发表时间:
2000 - 期刊:
- 影响因子:1.3
- 作者:
Jiming Jiang - 通讯作者:
Jiming Jiang
Jiming Jiang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jiming Jiang', 18)}}的其他基金
Collaborative Research: Modernizing Mixed Model Prediction
合作研究:现代化混合模型预测
- 批准号:
2210569 - 财政年份:2022
- 资助金额:
$ 12.03万 - 项目类别:
Standard Grant
Collaborative Research: Subject-level Prediction and Application
合作研究:学科级预测与应用
- 批准号:
1914465 - 财政年份:2019
- 资助金额:
$ 12.03万 - 项目类别:
Standard Grant
Development of a genome-wide enhancer map in Arabidopsis thaliana
拟南芥全基因组增强子图谱的开发
- 批准号:
1822254 - 财政年份:2017
- 资助金额:
$ 12.03万 - 项目类别:
Continuing Grant
Misspecified Mixed Model Analysis: Theory and Application
错误指定的混合模型分析:理论与应用
- 批准号:
1713120 - 财政年份:2017
- 资助金额:
$ 12.03万 - 项目类别:
Standard Grant
Collaborative Research: Prediction and Model Selection for New Challenging Problems with Complex Data+
协作研究:复杂数据新挑战性问题的预测和模型选择
- 批准号:
1510219 - 财政年份:2015
- 资助金额:
$ 12.03万 - 项目类别:
Standard Grant
Development of a genome-wide enhancer map in Arabidopsis thaliana
拟南芥全基因组增强子图谱的开发
- 批准号:
1412948 - 财政年份:2014
- 资助金额:
$ 12.03万 - 项目类别:
Continuing Grant
Collaborative Research: Best Predictive Small Area Estimation
协作研究:最佳预测小区域估计
- 批准号:
1121794 - 财政年份:2011
- 资助金额:
$ 12.03万 - 项目类别:
Standard Grant
Epigenetic Modifications of the Centromeric Chromatin in Rice
水稻着丝粒染色质的表观遗传修饰
- 批准号:
0923640 - 财政年份:2009
- 资助金额:
$ 12.03万 - 项目类别:
Standard Grant
Comparative Genomics of A Rice Centromere
水稻着丝粒的比较基因组学
- 批准号:
0603927 - 财政年份:2006
- 资助金额:
$ 12.03万 - 项目类别:
Continuing Grant
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
DISES Investigating mercury biogeochemical cycling via mixed-methods in complex artisanal gold mining landscapes and implications for community health
DISES 通过混合方法研究复杂手工金矿景观中的汞生物地球化学循环及其对社区健康的影响
- 批准号:
2307870 - 财政年份:2024
- 资助金额:
$ 12.03万 - 项目类别:
Standard Grant
Defining E. coli Diversity in Complex Samples: Methods for Surveillance & Transmission
定义复杂样品中的大肠杆菌多样性:监测方法
- 批准号:
MR/Y034449/1 - 财政年份:2024
- 资助金额:
$ 12.03万 - 项目类别:
Research Grant
Statistical Models and Methods for Complex Data in Metric Spaces
度量空间中复杂数据的统计模型和方法
- 批准号:
2310450 - 财政年份:2023
- 资助金额:
$ 12.03万 - 项目类别:
Standard Grant
Collaborative Research: Using Complex Systems Theory and Methods to Gauge the Gains and Persisting Challenges of Broadening Participation Initiatives
合作研究:利用复杂系统理论和方法来衡量扩大参与计划的收益和持续的挑战
- 批准号:
2301197 - 财政年份:2023
- 资助金额:
$ 12.03万 - 项目类别:
Standard Grant
ATD: Algorithms and Geometric Methods for Community and Anomaly Detection and Robust Learning in Complex Networks
ATD:复杂网络中社区和异常检测以及鲁棒学习的算法和几何方法
- 批准号:
2220271 - 财政年份:2023
- 资助金额:
$ 12.03万 - 项目类别:
Standard Grant
Methods for Enhancing Polygenic Risk Prediction Models for Complex Disease
增强复杂疾病多基因风险预测模型的方法
- 批准号:
10717244 - 财政年份:2023
- 资助金额:
$ 12.03万 - 项目类别:
Use Bayesian methods to facilitate the data integration for complex clinical trials
使用贝叶斯方法促进复杂临床试验的数据集成
- 批准号:
10714225 - 财政年份:2023
- 资助金额:
$ 12.03万 - 项目类别:
Enhancement of low-dimensional embedding methods for complex structures in spatiotemporal data with their applications
时空数据中复杂结构的低维嵌入方法及其应用的增强
- 批准号:
23K11018 - 财政年份:2023
- 资助金额:
$ 12.03万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Using realist methods to develop a complex intervention to discourage adolescents from engaging in knife crime
使用现实主义方法制定复杂的干预措施,阻止青少年参与持刀犯罪
- 批准号:
2897577 - 财政年份:2023
- 资助金额:
$ 12.03万 - 项目类别:
Studentship
Complex Methods in Spectral and Scattering Problems
光谱和散射问题的复杂方法
- 批准号:
2244801 - 财政年份:2023
- 资助金额:
$ 12.03万 - 项目类别:
Standard Grant