Misspecified Mixed Model Analysis: Theory and Application

错误指定的混合模型分析:理论与应用

基本信息

  • 批准号:
    1713120
  • 负责人:
  • 金额:
    $ 27.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-07-01 至 2022-06-30
  • 项目状态:
    已结题

项目摘要

This project, a collaboration between statisticians and a statistical geneticist, focuses on the development of statistical theory and methods for the analysis of data from genome-wide association studies (GWAS). Over the past decade, while GWAS have been very successful in detecting genetic variants that affect complex human traits/diseases, these discoveries have only accounted for a small portion of the genetic factors. Recently, significant progress has been made using statistical analysis based on a class of statistical models called mixed effects models. However, there is a gap in understanding why the method works, because, in a way, the statistical model used in the analysis is misspecified. This project aims to fill the gap by developing new theory and methods, and evaluating the methods through applications to real data. The project will promote teaching, training and learning, broaden the participation of students from under-represented groups, and build research networks between institutions. The research will be of great interest to many other areas of science, and the results will be widely disseminated in subject matter domain journals. In the past decade, more than 24,000 single-nucleotide polymorphisms (SNPs) have been reported to be associated with at least one trait/disease at the genome-wide significance level. However, these significantly associated SNPs only account for a small portion of the genetic factors underlying complex human traits/diseases, referred to as "missing heritability" in the genetics community. Recently, significant progress has been made in using the restricted maximum likelihood (REML) approach based on linear mixed models (LMM). While the REML approach appears to provide the right answer to many problems of practical interest, researchers have been puzzled by the fact that the LMM, under which the REML estimators are derived, is misspecified. In a recently published article, the investigators proved that the REML estimators of some important genetic quantities, such as heritability and the variance of the environmental error, are consistent despite the model misspecification. While this pioneering work led to a new field called misspecified mixed model analysis (MMMA), many theoretical and practical challenges remain unsolved. This project seeks to address the following problems: (1) extension of MMMA to correlated SNPs, (2) development of the asymptotic distribution of the REML estimator under misspecified LMM, (3) resampling methods for MMMA, (4) estimation of the number of nonzero random effects, and (5) extensions to multiple random effect factors and discrete traits. The research will also include software development to implement the methods.
该项目是统计学家和统计遗传学家之间的合作,重点是发展统计理论和方法,用于分析全基因组关联研究(GWAS)的数据。 在过去的十年中,虽然GWAS在检测影响复杂人类特征/疾病的遗传变异方面非常成功,但这些发现只占遗传因素的一小部分。 近年来,基于一类称为混合效应模型的统计模型的统计分析取得了重大进展。 然而,在理解为什么该方法有效方面存在差距,因为在某种程度上,分析中使用的统计模型是错误的。 该项目旨在通过开发新的理论和方法来填补差距,并通过应用于真实的数据来评估这些方法。 该项目将促进教学、培训和学习,扩大代表性不足群体的学生的参与,并在各机构之间建立研究网络。 这项研究将对许多其他科学领域产生极大的兴趣,其结果将在主题领域期刊上广泛传播。在过去的十年中,超过24,000个单核苷酸多态性(SNP)已被报道与全基因组显著性水平上的至少一种性状/疾病相关。 然而,这些显著相关的SNP仅占复杂人类性状/疾病的遗传因素的一小部分,在遗传学界被称为“缺失遗传力”。 近年来,基于线性混合模型(LMM)的约束最大似然(REML)方法取得了重大进展。 虽然REML方法似乎为许多实际问题提供了正确的答案,但研究人员一直困惑于这样一个事实,即导出REML估计量的LMM是错误的。 在最近发表的一篇文章中,研究人员证明了一些重要的遗传量的REML估计,如遗传力和环境误差的方差,尽管模型错误指定,但仍然是一致的。 虽然这项开创性的工作导致了一个新的领域,称为误指定混合模型分析(MMMA),许多理论和实践的挑战仍然没有解决。 本项目旨在解决以下问题:(1)MMMA扩展到相关SNP,(2)在错误指定的LMM下REML估计量的渐近分布的发展,(3)MMMA的恢复方法,(4)估计非零随机效应的数量,(5)扩展到多个随机效应因子和离散性状。 该研究还将包括软件开发,以实现这些方法。

项目成果

期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Sparse Equisigned PCA: Algorithms and Performance Bounds in the Noisy Rank-1 Setting
  • DOI:
    10.1214/19-ejs1657
  • 发表时间:
    2019-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Arvind Prasadan;R. Nadakuditi;D. Paul
  • 通讯作者:
    Arvind Prasadan;R. Nadakuditi;D. Paul
High-dimensional general linear hypothesis tests via non-linear spectral shrinkage
  • DOI:
    10.3150/19-bej1186
  • 发表时间:
    2018-10
  • 期刊:
  • 影响因子:
    1.5
  • 作者:
    Haoran Li;Alexander Aue;D. Paul
  • 通讯作者:
    Haoran Li;Alexander Aue;D. Paul
A discussion of prior-based Bayesian information criterion (PBIC)
基于先验的贝叶斯信息准则(PBIC)的讨论
An adaptable generalization of Hotelling’s $T^{2}$ test in high dimension
  • DOI:
    10.1214/19-aos1869
  • 发表时间:
    2016-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Haoran Li;Alexander Aue;D. Paul;Jie Peng;Pei Wang
  • 通讯作者:
    Haoran Li;Alexander Aue;D. Paul;Jie Peng;Pei Wang
Best look-alike prediction: Another look at the Bayesian classifier and beyond
最佳相似预测:贝叶斯分类器及其他分类器的另一种看法
  • DOI:
    10.1016/j.spl.2018.07.014
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Sun, Hanmei;Jiang, Jiming;Nguyen, Thuan;Luan, Yihui
  • 通讯作者:
    Luan, Yihui
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jiming Jiang其他文献

A Sensor Network Architecture for Urban Traffic State Estimation with Mixed Eulerian/Lagrangian Sensing Based on Distributed Computing
基于分布式计算的混合欧拉/拉格朗日传感的城市交通状态估计传感器网络架构
  • DOI:
    10.1007/978-3-319-04891-8_13
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    E. Canepa;Enas Odat;Ahmad H. Dehwah;M. Mousa;Jiming Jiang;C. Claudel
  • 通讯作者:
    C. Claudel
Invisible fence methods and the identification of differentially expressed gene sets
隐形栅栏方法和差异表达基因集的识别
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jiming Jiang;Thuan Nguyen;J. Rao
  • 通讯作者:
    J. Rao
The subset argument and consistency of MLE in GLMM: Answer to an open problem and beyond
GLMM 中 MLE 的子集论证和一致性:对开放问题及其他问题的回答
  • DOI:
    10.1214/13-aos1084
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
    Jiming Jiang
  • 通讯作者:
    Jiming Jiang
Genome-widemapping of cytosine methylation revealed dynamic DNA methylation patterns associated with genes and centromeres in rice. Plant Journal
胞嘧啶甲基化的全基因组图谱揭示了与水稻基因和着丝粒相关的动态 DNA 甲基化模式。
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Huihuang Yan;Shinji Kikuchi;Pavel Neumann;Wenli Zhang;Yufeng Wu;Feng Chen;Jiming Jiang
  • 通讯作者:
    Jiming Jiang
A nonlinear Gauss-Seidel algorithm for inference about GLMM
用于 GLMM 推理的非线性 Gauss-Seidel 算法
  • DOI:
    10.1007/s001800000030
  • 发表时间:
    2000
  • 期刊:
  • 影响因子:
    1.3
  • 作者:
    Jiming Jiang
  • 通讯作者:
    Jiming Jiang

Jiming Jiang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jiming Jiang', 18)}}的其他基金

Collaborative Research: Modernizing Mixed Model Prediction
合作研究:现代化混合模型预测
  • 批准号:
    2210569
  • 财政年份:
    2022
  • 资助金额:
    $ 27.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Subject-level Prediction and Application
合作研究:学科级预测与应用
  • 批准号:
    1914465
  • 财政年份:
    2019
  • 资助金额:
    $ 27.99万
  • 项目类别:
    Standard Grant
Development of a genome-wide enhancer map in Arabidopsis thaliana
拟南芥全基因组增强子图谱的开发
  • 批准号:
    1822254
  • 财政年份:
    2017
  • 资助金额:
    $ 27.99万
  • 项目类别:
    Continuing Grant
Collaborative Research: Prediction and Model Selection for New Challenging Problems with Complex Data+
协作研究:复杂数据新挑战性问题的预测和模型选择
  • 批准号:
    1510219
  • 财政年份:
    2015
  • 资助金额:
    $ 27.99万
  • 项目类别:
    Standard Grant
Development of a genome-wide enhancer map in Arabidopsis thaliana
拟南芥全基因组增强子图谱的开发
  • 批准号:
    1412948
  • 财政年份:
    2014
  • 资助金额:
    $ 27.99万
  • 项目类别:
    Continuing Grant
Collaborative Research: Best Predictive Small Area Estimation
协作研究:最佳预测小区域估计
  • 批准号:
    1121794
  • 财政年份:
    2011
  • 资助金额:
    $ 27.99万
  • 项目类别:
    Standard Grant
Epigenetic Modifications of the Centromeric Chromatin in Rice
水稻着丝粒染色质的表观遗传修饰
  • 批准号:
    0923640
  • 财政年份:
    2009
  • 资助金额:
    $ 27.99万
  • 项目类别:
    Standard Grant
Fence Methods for Complex Model Selection Problems
复杂模型选择问题的栅栏方法
  • 批准号:
    0806127
  • 财政年份:
    2008
  • 资助金额:
    $ 27.99万
  • 项目类别:
    Standard Grant
Comparative Genomics of A Rice Centromere
水稻着丝粒的比较基因组学
  • 批准号:
    0603927
  • 财政年份:
    2006
  • 资助金额:
    $ 27.99万
  • 项目类别:
    Continuing Grant
Research in Statistics
统计学研究
  • 批准号:
    0402824
  • 财政年份:
    2004
  • 资助金额:
    $ 27.99万
  • 项目类别:
    Standard Grant

相似国自然基金

基于MIXED Transformer和DS-TransUNet构建嵌入椎旁肌退变量化模块的体内校准骨密度模型检测骨质疏松的可行性研究。
  • 批准号:
    82302303
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CRII: OAC: RUI: Real-Time, Mixed-Integer Model Predictive Control via Learned GPU-Acceleration
CRII:OAC:RUI:通过学习 GPU 加速进行实时混合整数模型预测控制
  • 批准号:
    2246022
  • 财政年份:
    2023
  • 资助金额:
    $ 27.99万
  • 项目类别:
    Standard Grant
Role of Complement Receptor Activation in a Mixed Dementia Model
补体受体激活在混合痴呆模型中的作用
  • 批准号:
    10585080
  • 财政年份:
    2023
  • 资助金额:
    $ 27.99万
  • 项目类别:
Collaborative Research: Modernizing Mixed Model Prediction
合作研究:现代化混合模型预测
  • 批准号:
    2210208
  • 财政年份:
    2022
  • 资助金额:
    $ 27.99万
  • 项目类别:
    Standard Grant
Model predictive control of a mixed battery array for electricity grid storage
电网存储混合电池阵列的模型预测控制
  • 批准号:
    RGPIN-2019-04286
  • 财政年份:
    2022
  • 资助金额:
    $ 27.99万
  • 项目类别:
    Discovery Grants Program - Individual
A Framework to Model Mixed Conventional and Automated Vehicular Traffic: Ameliorating Operations, Safety and Environmental Impacts
混合传统和自动车辆交通建模框架:改善运营、安全和环境影响
  • 批准号:
    RGPIN-2020-06760
  • 财政年份:
    2022
  • 资助金额:
    $ 27.99万
  • 项目类别:
    Discovery Grants Program - Individual
Pretest and shrinkage estimation methods for joint modeling of linear mixed models and the AFT model
线性混合模型和AFT模型联合建模的预测试和收缩估计方法
  • 批准号:
    573853-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 27.99万
  • 项目类别:
    University Undergraduate Student Research Awards
Collaborative Research: Modernizing Mixed Model Prediction
合作研究:现代化混合模型预测
  • 批准号:
    2210372
  • 财政年份:
    2022
  • 资助金额:
    $ 27.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Modernizing Mixed Model Prediction
合作研究:现代化混合模型预测
  • 批准号:
    2210569
  • 财政年份:
    2022
  • 资助金额:
    $ 27.99万
  • 项目类别:
    Standard Grant
Process evaluation of complex early-years interventions: developing a model of best practise through a mixed-methods case study approach
复杂的早期干预措施的过程评估:通过混合方法案例研究方法开发最佳实践模型
  • 批准号:
    2735050
  • 财政年份:
    2022
  • 资助金额:
    $ 27.99万
  • 项目类别:
    Studentship
The Minimal Model Program in Positive and Mixed Characteristics
正特征和混合特征的最小模型程序
  • 批准号:
    2306854
  • 财政年份:
    2022
  • 资助金额:
    $ 27.99万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了