Collaborative Research: Prediction and Model Selection for New Challenging Problems with Complex Data+

协作研究:复杂数据新挑战性问题的预测和模型选择

基本信息

  • 批准号:
    1510219
  • 负责人:
  • 金额:
    $ 11.23万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-08-15 至 2018-07-31
  • 项目状态:
    已结题

项目摘要

Mixed model prediction, that is, prediction based on a class of statistical models known as mixed effects models, has a fairly long history. The traditional fields of applications have included genetics, agriculture, education, and surveys. Nowadays, new and challenging problems have emerged from such fields as business and health sciences, in addition to the traditional fields, to which methods of mixed model prediction are potentially applicable, but not without further methodology and computational developments. Some of these problems occur when interest is at subject level, such as personalized medicine, or (small) sub-population level, such as small communities, rather than at large population level. In such cases, it is possible to make substantial gains in prediction accuracy by identifying a class that a new subject belongs to. Other challenging problems occur when applying existing model search strategies in situations of incomplete or missing data, in model search or selection when prediction is of primary interest, and in making statistical inference based on the result of model search or selection. This collaborative research project aims at solving these challenging problems in prediction and model selection in situations of complex data, such as incomplete or missing data, and data that are correlated due to presence of random effects.In this collaborative research project the PIs develop a novel statistical method, called classified mixed model prediction, to identify the subject class. This way, the new subject is associated with a random effect corresponding to the same class in the training data, so that the mixed model prediction method can be used to make the best prediction. Furthermore, the PIs develop a recently proposed method, called E-MS algorithm, for model selection in the presence of incomplete or missing data. The PIs also develop an idea called predictive model selection by deriving a predictive measure of lack-of-fit, and combining this measure with a recently developed class of strategies of model selection, called the fence methods. Finally, the PIs develop a unified Jackknife method to accurately assess uncertainty in mixed model analysis after model selection. Theories will be established for these new methods, and their performance and potential gains through extensive Monte-Carlo simulations will be studied. The new methods will be implemented in the R language/environment for statistical computing and graphics. All of the developed methodologies will be applied and tested in a number of applications via a series of close collaborations with experts who will provide access to the data and also guidance in interpretation and dissemination of findings. The fields of applications include genetics, health and medicine, agriculture, education, business and economy. The research project will also promote teaching, training and learning that involve under-represented groups, and build research networks between our institutions.
混合模型预测,即基于一类被称为混合效应模型的统计模型的预测,具有相当长的历史。传统的应用领域包括遗传学、农业、教育和调查。如今,新的和具有挑战性的问题已经出现,从商业和健康科学等领域,除了传统的领域,混合模型预测的方法是潜在的适用,但不是没有进一步的方法和计算的发展。其中一些问题发生在兴趣处于学科水平(如个性化医疗)或(小)亚人群水平(如小社区)而不是大人群水平时。在这种情况下,可以通过识别新对象所属的类别来大幅提高预测精度。当在不完整或缺失数据的情况下应用现有模型搜索策略时,在预测是主要兴趣的模型搜索或选择中,以及在基于模型搜索或选择的结果进行统计推断时,会出现其他具有挑战性的问题。本合作研究项目旨在解决在数据不完整或缺失、随机效应相关等复杂数据情况下的预测和模型选择等难题。在本合作研究项目中,PI开发了一种新的统计方法,称为分类混合模型预测,用于识别主题类别。这样,新的主题与训练数据中对应于同一类的随机效应相关联,从而可以使用混合模型预测方法进行最佳预测。此外,PI开发了一种最近提出的方法,称为E-MS算法,用于在存在不完整或缺失数据的情况下进行模型选择。PI还开发了一种称为预测模型选择的想法,通过推导出一种预测性的失拟度量,并将这种度量与最近开发的一类模型选择策略(称为栅栏方法)相结合。最后,PI开发了一种统一的Jackknife方法,以准确评估模型选择后混合模型分析中的不确定性。将为这些新方法建立理论,并通过广泛的蒙特-卡罗模拟研究其性能和潜在收益。新方法将在R语言/环境中实现,用于统计计算和图形。将通过与专家的一系列密切合作,在若干应用程序中应用和测试所有开发的方法,这些专家将提供数据访问以及解释和传播调查结果的指导。应用领域包括遗传学、健康和医学、农业、教育、商业和经济。该研究项目还将促进涉及代表性不足群体的教学,培训和学习,并在我们的机构之间建立研究网络。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jiming Jiang其他文献

A Sensor Network Architecture for Urban Traffic State Estimation with Mixed Eulerian/Lagrangian Sensing Based on Distributed Computing
基于分布式计算的混合欧拉/拉格朗日传感的城市交通状态估计传感器网络架构
  • DOI:
    10.1007/978-3-319-04891-8_13
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    E. Canepa;Enas Odat;Ahmad H. Dehwah;M. Mousa;Jiming Jiang;C. Claudel
  • 通讯作者:
    C. Claudel
Invisible fence methods and the identification of differentially expressed gene sets
隐形栅栏方法和差异表达基因集的识别
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jiming Jiang;Thuan Nguyen;J. Rao
  • 通讯作者:
    J. Rao
The subset argument and consistency of MLE in GLMM: Answer to an open problem and beyond
GLMM 中 MLE 的子集论证和一致性:对开放问题及其他问题的回答
  • DOI:
    10.1214/13-aos1084
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
    Jiming Jiang
  • 通讯作者:
    Jiming Jiang
Genome-widemapping of cytosine methylation revealed dynamic DNA methylation patterns associated with genes and centromeres in rice. Plant Journal
胞嘧啶甲基化的全基因组图谱揭示了与水稻基因和着丝粒相关的动态 DNA 甲基化模式。
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Huihuang Yan;Shinji Kikuchi;Pavel Neumann;Wenli Zhang;Yufeng Wu;Feng Chen;Jiming Jiang
  • 通讯作者:
    Jiming Jiang
A nonlinear Gauss-Seidel algorithm for inference about GLMM
用于 GLMM 推理的非线性 Gauss-Seidel 算法
  • DOI:
    10.1007/s001800000030
  • 发表时间:
    2000
  • 期刊:
  • 影响因子:
    1.3
  • 作者:
    Jiming Jiang
  • 通讯作者:
    Jiming Jiang

Jiming Jiang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jiming Jiang', 18)}}的其他基金

Collaborative Research: Modernizing Mixed Model Prediction
合作研究:现代化混合模型预测
  • 批准号:
    2210569
  • 财政年份:
    2022
  • 资助金额:
    $ 11.23万
  • 项目类别:
    Standard Grant
Collaborative Research: Subject-level Prediction and Application
合作研究:学科级预测与应用
  • 批准号:
    1914465
  • 财政年份:
    2019
  • 资助金额:
    $ 11.23万
  • 项目类别:
    Standard Grant
Development of a genome-wide enhancer map in Arabidopsis thaliana
拟南芥全基因组增强子图谱的开发
  • 批准号:
    1822254
  • 财政年份:
    2017
  • 资助金额:
    $ 11.23万
  • 项目类别:
    Continuing Grant
Misspecified Mixed Model Analysis: Theory and Application
错误指定的混合模型分析:理论与应用
  • 批准号:
    1713120
  • 财政年份:
    2017
  • 资助金额:
    $ 11.23万
  • 项目类别:
    Standard Grant
Development of a genome-wide enhancer map in Arabidopsis thaliana
拟南芥全基因组增强子图谱的开发
  • 批准号:
    1412948
  • 财政年份:
    2014
  • 资助金额:
    $ 11.23万
  • 项目类别:
    Continuing Grant
Collaborative Research: Best Predictive Small Area Estimation
协作研究:最佳预测小区域估计
  • 批准号:
    1121794
  • 财政年份:
    2011
  • 资助金额:
    $ 11.23万
  • 项目类别:
    Standard Grant
Epigenetic Modifications of the Centromeric Chromatin in Rice
水稻着丝粒染色质的表观遗传修饰
  • 批准号:
    0923640
  • 财政年份:
    2009
  • 资助金额:
    $ 11.23万
  • 项目类别:
    Standard Grant
Fence Methods for Complex Model Selection Problems
复杂模型选择问题的栅栏方法
  • 批准号:
    0806127
  • 财政年份:
    2008
  • 资助金额:
    $ 11.23万
  • 项目类别:
    Standard Grant
Comparative Genomics of A Rice Centromere
水稻着丝粒的比较基因组学
  • 批准号:
    0603927
  • 财政年份:
    2006
  • 资助金额:
    $ 11.23万
  • 项目类别:
    Continuing Grant
Research in Statistics
统计学研究
  • 批准号:
    0402824
  • 财政年份:
    2004
  • 资助金额:
    $ 11.23万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
  • 批准号:
    2403312
  • 财政年份:
    2024
  • 资助金额:
    $ 11.23万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
  • 批准号:
    2403313
  • 财政年份:
    2024
  • 资助金额:
    $ 11.23万
  • 项目类别:
    Standard Grant
Collaborative Research: Data Poisoning Attacks and Infrastructure-Enabled Solutions for Traffic State Estimation and Prediction
合作研究:数据中毒攻击和基于基础设施的交通状态估计和预测解决方案
  • 批准号:
    2326341
  • 财政年份:
    2023
  • 资助金额:
    $ 11.23万
  • 项目类别:
    Standard Grant
Collaborative Research: TRTech-PGR: PlantSynBio: FuncZyme: Building a pipeline for rapid prediction and functional validation of plant enzyme activities
合作研究:TRTech-PGR:PlantSynBio:FuncZyme:建立植物酶活性快速预测和功能验证的管道
  • 批准号:
    2310396
  • 财政年份:
    2023
  • 资助金额:
    $ 11.23万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-CSIRO: HCC: Small: Understanding Bias in AI Models for the Prediction of Infectious Disease Spread
合作研究:NSF-CSIRO:HCC:小型:了解预测传染病传播的 AI 模型中的偏差
  • 批准号:
    2302969
  • 财政年份:
    2023
  • 资助金额:
    $ 11.23万
  • 项目类别:
    Standard Grant
Sequential Modeling for Prediction of Periodontal Diseases: an intra-Collaborative Practice-based Research study (ICPRS)
牙周病预测的序列模型:基于内部协作实践的研究 (ICPRS)
  • 批准号:
    10755010
  • 财政年份:
    2023
  • 资助金额:
    $ 11.23万
  • 项目类别:
Collaborative Research: TRTech-PGR: PlantSynBio: FuncZyme: Building a pipeline for rapid prediction and functional validation of plant enzyme activities
合作研究:TRTech-PGR:PlantSynBio:FuncZyme:建立植物酶活性快速预测和功能验证的管道
  • 批准号:
    2310395
  • 财政年份:
    2023
  • 资助金额:
    $ 11.23万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-CSIRO: HCC: Small: Understanding Bias in AI Models for the Prediction of Infectious Disease Spread
合作研究:NSF-CSIRO:HCC:小型:了解预测传染病传播的 AI 模型中的偏差
  • 批准号:
    2302968
  • 财政年份:
    2023
  • 资助金额:
    $ 11.23万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Data-Driven Prediction of Hybrid Organic-Inorganic Structures
合作研究:DMREF:混合有机-无机结构的数据驱动预测
  • 批准号:
    2323547
  • 财政年份:
    2023
  • 资助金额:
    $ 11.23万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-CSIRO: HCC: Small: Understanding Bias in AI Models for the Prediction of Infectious Disease Spread
合作研究:NSF-CSIRO:HCC:小型:了解预测传染病传播的 AI 模型中的偏差
  • 批准号:
    2302970
  • 财政年份:
    2023
  • 资助金额:
    $ 11.23万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了