NIRT: Devices and Architectures for Neuromorphic Circuits with Nanoelectronic Components
NIRT:具有纳米电子元件的神经形态电路的设备和架构
基本信息
- 批准号:0403618
- 负责人:
- 金额:$ 130万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-08-15 至 2009-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Devices and Architectures for Neuromorphic Circuits with Nanoelectronic ComponentsThis proposal was received in response to Nanoscale Science and Engineering initiative, NSF 03-043, category NIRT. Preliminary studies indicate that hybrid semiconductor/molecular ("CMOL") circuits may serve as a basis for neuromorphic networks ("CrossNets") capable of advanced mixed-signal information processing with unprecedented density (beyond 1012 active devices per cm2) and performance (up to 1020 elementary operations per second per cm2) at acceptable power consumption (below 100 W/cm2). The project addresses two key issues of the CMOL CrossNet development: (i) experimental study of single-molecule latching switches self-assembled on prefabricated metallic nanowire structures, and characterization of transport properties of these components, and (ii) development of advanced architectures for digital and mixed-signal CMOL circuits, including digital processors and mixed-signal neuromorphic networks. The exponential progress of silicon digital technology is expected to run, some time during the next decade, into the "red brick wall" of fundamental physical and technical limitations. The project will explore one possible direction to extend the growth to nanoscale devices, by transferring from purely semiconductor digital chips to hybrid semiconductor/molecular integrated circuits. In such circuits the simplest and most numerous devices would be chemically synthesized and then self-assemble, from solution, on silicon chips with prefabricated nanowire fabrics. This project addresses two key issues of this new exciting field: the synthesis and self-assembly of molecular devices and the development of innovative, bio-inspired architectures for future hybrid circuits.
具有纳米电子特性的神经形态电路的器件和结构该提案是响应纳米尺度科学和工程倡议,NSF 03-043,类别NIRT而收到的。初步研究表明,混合半导体/分子(“CMOL”)电路可以用作神经形态网络(“CrossNets”)的基础,该神经形态网络能够以可接受的功耗(低于100 W/cm 2)进行具有前所未有的密度(超过1012个有源器件/cm 2)和性能(高达1020个基本操作/秒/cm 2)的高级混合信号信息处理。该项目解决了CMOL CrossNet开发的两个关键问题:(i)在预制金属纳米线结构上自组装的单分子闭锁开关的实验研究,以及这些组件的传输特性的表征,以及(ii)数字和混合信号CMOL电路的先进架构的开发,包括数字处理器和混合信号神经形态网络。硅数字技术的指数级进步预计将在未来十年的某个时候进入基本物理和技术限制的“红砖墙”。该项目将探索一个可能的方向,通过从纯半导体数字芯片转移到混合半导体/分子集成电路,将增长扩展到纳米级器件。在这样的电路中,最简单、数量最多的器件将通过化学合成,然后从溶液中自组装到带有预制纳米线织物的硅芯片上。该项目解决了这一新的令人兴奋的领域的两个关键问题:分子器件的合成和自组装以及未来混合电路的创新,生物启发架构的开发。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Konstantin Likharev其他文献
Dragging single electrons
拖动单个电子
- DOI:
10.1038/35069173 - 发表时间:
2001-03-29 - 期刊:
- 影响因子:48.500
- 作者:
Konstantin Likharev - 通讯作者:
Konstantin Likharev
Konstantin Likharev的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Konstantin Likharev', 18)}}的其他基金
BIC: Bio-inspired Information Processing Using Hybrid Nanodevice Arrays
BIC:使用混合纳米器件阵列的仿生信息处理
- 批准号:
0432116 - 财政年份:2004
- 资助金额:
$ 130万 - 项目类别:
Continuing Grant
Nanoscale Single-electron Switching Arrays for Self-evolving Neuromorphic Networks
用于自进化神经形态网络的纳米级单电子开关阵列
- 批准号:
0103059 - 财政年份:2001
- 资助金额:
$ 130万 - 项目类别:
Standard Grant
相似国自然基金
兼捕减少装置(Bycatch Reduction Devices, BRD)对拖网网囊系统水动力及渔获性能的调控机制
- 批准号:32373187
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
ECCS-EPSRC - Advanced III-N Devices and Circuit Architectures for mm-Wave Future-Generation Wireless Communications
ECCS-EPSRC - 用于毫米波下一代无线通信的先进 III-N 器件和电路架构
- 批准号:
EP/X012123/1 - 财政年份:2023
- 资助金额:
$ 130万 - 项目类别:
Research Grant
ECCS-EPSRC - Advanced III-N Devices and Circuit Architectures for mm-Wave Future-Generation Wireless Communications'
ECCS-EPSRC - 用于毫米波未来一代无线通信的先进 III-N 器件和电路架构
- 批准号:
EP/X01214X/1 - 财政年份:2023
- 资助金额:
$ 130万 - 项目类别:
Research Grant
FuSe: Bio-inspired sensorimotor control for robotic locomotion with neuromorphic architectures using beyond-CMOS materials and devices
FuSe:使用超越 CMOS 材料和设备的神经形态架构的机器人运动仿生感觉运动控制
- 批准号:
2328815 - 财政年份:2023
- 资助金额:
$ 130万 - 项目类别:
Continuing Grant
ECCS-EPSRC: Advanced III-N Devices and Circuit Architectures for mm-Wave Future Generation Wireless Communication
ECCS-EPSRC:用于毫米波下一代无线通信的先进 III-N 器件和电路架构
- 批准号:
2303897 - 财政年份:2023
- 资助金额:
$ 130万 - 项目类别:
Standard Grant
SHF: Small: Energy and Computational Efficient Deep Generative AI Models via Emerging Devices, Circuits, and Architectures
SHF:小型:通过新兴设备、电路和架构实现能源和计算高效的深度生成人工智能模型
- 批准号:
2219753 - 财政年份:2022
- 资助金额:
$ 130万 - 项目类别:
Standard Grant
Novel Silver-Dielectric Architectures for Memristor Devices
用于忆阻器器件的新型银电介质架构
- 批准号:
551343-2020 - 财政年份:2020
- 资助金额:
$ 130万 - 项目类别:
University Undergraduate Student Research Awards
EAGER: SaTC: CORE: Small: Blockchain Architectures for Resource-Constrained Devices
EAGER:SaTC:核心:小型:资源受限设备的区块链架构
- 批准号:
1937357 - 财政年份:2019
- 资助金额:
$ 130万 - 项目类别:
Standard Grant
Deep Optical Learning Devices and Architectures
深度光学学习设备和架构
- 批准号:
1810508 - 财政年份:2018
- 资助金额:
$ 130万 - 项目类别:
Standard Grant
NeTS: Small: Functional Fabric Devices and Architectures for the Internet of Things
NeTS:小型:物联网的功能性结构设备和架构
- 批准号:
1816387 - 财政年份:2018
- 资助金额:
$ 130万 - 项目类别:
Standard Grant
SHF: Small: Visual Architectures: Engaging Crowds in Design and Discovery for Custom Reconfigurable Devices
SHF:小型:视觉架构:让大众参与定制可重构设备的设计和发现
- 批准号:
1617475 - 财政年份:2016
- 资助金额:
$ 130万 - 项目类别:
Standard Grant