NIRT: Fundamental Understanding of Nanofluidics for Advanced Bioseparation and Analysis

NIRT:对先进生物分离和分析的纳米流体的基本了解

基本信息

  • 批准号:
    0404124
  • 负责人:
  • 金额:
    $ 100万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-08-15 至 2008-07-31
  • 项目状态:
    已结题

项目摘要

AbstractCTS-0404124S. Han, University of New Mexico Intellectual Merit: This research team will investigate the transport of complex fluids in channels of nanoscale dimensions. Our scientific goal is to render an accurate description of biomolecular structural changes, reaction, and transport in nanochannels as a function of built-in as well as externally applied potentials. The understanding of such fluid and molecular transport, which cannot be accurately modeled by continuum mechanics, is imperative for the development of a new generation of devices to address the urgent need for efficient separation of proteins in the context of their application to proteomics, environmental science, and advanced diagnostics. The technological and scientific outcome from this research will enable high throughput separation, purification, identification, and determination of structure-function relationships of biomolecular species and biomolecular complexes. The proposed activities consist of two main categories. Nanofluidics of Complex Aqueous Solutions. The team will investigate the following physical processes to fundamentally understand the behavior of aqueous solutions containing dissolved proteins passing through nanochannels: electro-osmosis in nanochannels with overlapping (or nearly overlapping) double layers; impact of a field-effect-transistor-like gate electric field on solution pH during electrophoresis; and effect of fluid inhomogeneity on electrokinetic phenomena. The team will employ both theoretical (quasi-continuum model, molecular dynamics simulations, and Boltzmann kinetic model) and experimental (fluorescence spectroscopy; electrochemical impedance spectroscopy; substrate-potential-modulated, time-resolved Fourier transform infrared spectroscopy; and nanomachined-waveguide-assisted Fourier transform infrared spectroscopy) techniques to predictably describe and probe the transport of protein molecules in electrolyte buffer solutions. Applied Bioseparation and Analysis. The team will exploit this fundamental understanding of nanofluidics to develop advanced bioseparation schemes based largely on nanoelectrophoresis. Nanofluidic Switching relies on modulation of the zeta-potential in the nanochannels driven by a gate potential applied to the semiconductor substrate surrounding the nanochannels, but separated from the fluid by a thin oxide. The field effect transistor (FET) analogue based on this nanofluidic switching concept may potentially lead to integrated nanofluidic circuits consisting of all solid-state electrokinetic pumps, valves, and filters. It will also allow nanochannel pH modulation, which can then be applied in Nanoelectrochromatography, allowing target proteins to be bound and released by changing the voltage on the semiconductor substrate. Broader Impact: In addition to Sandia National Laboratories and Computational Fluid Dynamics Research Corporation, the team has an on-going collaboration with Intel Corporation in the area of microfluidic protein separations, which will synergistically enhance the scientific and technical impact of proposed research. The University of New Mexico (UNM) will benefit from the established systems biology program at Washington State University (WSU), while WSU will benefit from UNM's nanofabrication capability. The proposed research program offers an interdisciplinary educational environment to mentor 1 postdoctoral researcher, 5 graduate students, and 3 summer undergraduate students. The information gathered from research also provides a knowledge base for course development. The team will develop a course in Non-Continuum Fluid Mechanics at UNM during the 2nd year of this research. The principal investigator (PI) and co-PIs will also actively participate in the development of courses in nanofabrication, bioseparation, spectroscopic imaging, and optics. The course content will substantially draw from the proposed research and reflect its latest advances. The new elective courses will broadly impact the students from various disciplines that range from chemical engineering, to biology, to mathematics. Such course development serves the goal of the School of Engineering at UNM to launch a degree program in Nano/Micro Materials, Devices, and Systems (NMMDS). Educational research in this scientifically fertile area will serve the students who desire to pursue a career that promises rapid growth and potentially significant societal impact. In addition to graduate students, the PIs will continue to actively involve underrepresented undergraduate students with research. The outreach program will be coordinated with Diversity Programs and Engineering Student Programs at UNM to actively educate prospective high school students of the research-oriented educational opportunities. At WSU, the College of Engineering and Architecture organizes three 6-day summer youth camps, called Native Youth Exploring Engineering (NY.EE) and a new HY.EE equivalent for Hispanic high school students. NY'EE attracts about eighty 9th-11th-grade students from WA, ID, MT and OR Indian reservations. All these outreach programs have significant potential to improve the percentage of high school students pursuing post-secondary education and increasing the enrollment of minority students (especially Hispanics and Native Americans) and women. The educational plan directly addresses the expressed needs of both students and faculty at UNM and WSU. This project will also enhance the NSF"s EPSCoR initiative in nanomaterials in New Mexico. Research and Education Themes: Nanoscale Structures, Novel Phenomena, and Quantum Control; Biosystems at the Nanoscale; and Multi-scale, Multi-phenomena Theory, Modeling and Simulation at the Nanoscale.This award is funded by the Division of Chemical & Transport Systems and Design, Manufacture & Industrial Innovation.
摘要CTS-0404124 S。Han,新墨西哥州大学,智力优势:这个研究小组将研究复杂流体在纳米尺度通道中的传输。 我们的科学目标是提供一个准确的描述生物分子的结构变化,反应,并在纳米通道作为内置的功能,以及外部施加的电位运输。 这种流体和分子的运输,这不能准确地模拟连续介质力学的理解,是必要的新一代设备的发展,以解决迫切需要的高效分离的蛋白质的上下文中的蛋白质组学,环境科学和先进的诊断。 这项研究的技术和科学成果将使高通量分离,纯化,鉴定和确定生物分子物种和生物分子复合物的结构-功能关系成为可能。 拟议的活动包括两大类。复杂水溶液的纳米流体。该团队将研究以下物理过程,从根本上了解含有溶解蛋白质的水溶液通过纳米通道的行为:具有重叠(或几乎重叠)双层的纳米通道中的电渗;场效应晶体管样栅极电场对电泳过程中溶液pH值的影响;以及流体不均匀性对电动现象的影响。 该团队将采用理论(准连续模型,分子动力学模拟和玻尔兹曼动力学模型)和实验(荧光光谱;电化学阻抗光谱;衬底电位调制,时间分辨傅里叶变换红外光谱;和纳米波导辅助傅里叶变换红外光谱)技术来可预测地描述和探测蛋白质分子在电解质缓冲溶液中的运输。应用生物分离与分析该团队将利用对纳米流体的基本理解,开发主要基于纳米电泳的先进生物分离方案。 纳米流体切换依赖于由施加到纳米通道周围的半导体衬底的栅极电势驱动的纳米通道中的ζ电势的调制,但是通过薄氧化物与流体分离。 基于这种纳米流体开关概念的场效应晶体管(FET)模拟可能潜在地导致由所有固态电动泵、阀和过滤器组成的集成纳米流体电路。 它还可以调节纳米通道的pH值,然后将其应用于纳米电色谱法,通过改变半导体基底上的电压来结合和释放目标蛋白质。更广泛的影响:除了桑迪亚国家实验室和计算流体动力学研究公司之外,该团队还与英特尔公司在微流体蛋白质分离领域进行了持续合作,这将协同增强拟议研究的科学和技术影响。 新墨西哥州大学(UNM)将受益于华盛顿州立大学(WSU)已建立的系统生物学项目,而WSU将受益于UNM的纳米制造能力。 拟议的研究计划提供了一个跨学科的教育环境,导师1博士后研究员,5名研究生和3名暑期本科生。 从研究中收集的信息也为课程开发提供了知识基础。 该团队将在这项研究的第二年在UNM开发一门非连续流体力学课程。 首席研究员(PI)和合作PI也将积极参与纳米纤维,生物分离,光谱成像和光学课程的开发。 课程内容将充分借鉴拟议的研究,并反映其最新进展。 新的选修课程将广泛影响从化学工程,生物学,数学等各个学科的学生。 这样的课程开发服务于UNM工程学院的目标,推出纳米/微米材料,器件和系统(NMMDS)学位课程。 在这个科学肥沃的领域的教育研究将服务于谁希望追求的职业生涯,承诺快速增长和潜在的重大社会影响的学生。 除了研究生,PI将继续积极参与研究代表性不足的本科生。 该推广计划将与UNM的多样性计划和工程学生计划协调,以积极教育未来的高中学生的研究型教育机会。 在华盛顿州立大学,工程与建筑学院组织了三个为期6天的青年夏令营,称为土著青年探索工程(NY.EE)和一个新的HY.EE相当于西班牙裔高中生。 NY'EE吸引了来自WA,ID,MT和OR印第安人保留地的80名9 - 11年级学生。 所有这些推广方案都有很大的潜力,可以提高高中生接受中学后教育的比例,增加少数民族学生(特别是西班牙裔和美洲土著人)和妇女的入学率。 教育计划直接解决了UNM和WSU的学生和教师的需求。 该项目还将加强NSF在新墨西哥州纳米材料方面的EPSCoR倡议。研究和教育主题:纳米尺度结构、新现象和量子控制;纳米尺度的生物系统;以及纳米尺度的多尺度、多现象理论、建模和模拟。该奖项由化学&运输系统和设计、制造&工业创新部资助。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sang Han其他文献

Insights and Outcomes from a Revolution in a Chemical Engineering Department
化学工程系革命的见解和成果
Probing local structure of iodobenzene molecules with photoelectron diffraction using to a soft X-ray free-electron laser
使用软 X 射线自由电子激光通过光电子衍射探测碘苯分子的局部结构
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    TERAMOTO,Takahiro;MINEMOTO;Shinichirou;MAJIMA,Takuya;MIZUNO,Tomoya;MUN;Je Hoi;PARK;Sang Han;KWON;Soonnam;YAGISHITA,Akira;DECLEVA;Piero;STERNER;Mauro;TSURU,Shota
  • 通讯作者:
    TSURU,Shota
Ancient schwannoma of the pancreas mimicking a cystic tumor
  • DOI:
    10.1007/s004280100492
  • 发表时间:
    2001-11-01
  • 期刊:
  • 影响因子:
    3.100
  • 作者:
    Ji Lee;Hyung Kim;Jong Jung;Sang Han;Young Kim
  • 通讯作者:
    Young Kim
Pandemic Pivots Show Sustained Faculty Change
流行病的转折点显示教师的持续变化
Real-time stereo matching architecture based on 2D MRF model: a memory-efficient systolic array
基于2D MRF模型的实时立体匹配架构:内存高效的脉动阵列

Sang Han的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sang Han', 18)}}的其他基金

Collaborative Research: Atomic Displacement Engineering of Post-epitaxial Thin-films (ADEPT)
合作研究:外延后薄膜原子位移工程(ADEPT)
  • 批准号:
    1809095
  • 财政年份:
    2018
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
Collaborative Research: Large-Scale Patterning of Germanium Quantum Dots by Stress Transfer
合作研究:通过应力传递实现锗量子点的大规模图案化
  • 批准号:
    1068970
  • 财政年份:
    2011
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
Collaborative Proposal: Low-Cost Substrates for III-V Photovoltaics by Self-Templated Selective Epitaxial Growth of Germanium on Silicon
合作提案:通过硅上锗的自模板选择性外延生长实现低成本 III-V 光伏衬底
  • 批准号:
    0907112
  • 财政年份:
    2009
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
Collaborative Proposal: Nanoparticle Separations in Nanochannels Using Fluidic Field Effect Transistors
合作提案:使用流体场效应晶体管在纳米通道中分离纳米颗粒
  • 批准号:
    0756776
  • 财政年份:
    2008
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
NER: Nanofluidics for Advanced Separation and Detection of Biomolecules
NER:用于生物分子高级分离和检测的纳米流体
  • 批准号:
    0304237
  • 财政年份:
    2003
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
CAREER: In Situ Monitoring of Surface Phenomena during Silicon Germanium Deposition and Etching
职业:硅锗沉积和蚀刻过程中表面现象的原位监测
  • 批准号:
    0094145
  • 财政年份:
    2001
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant

相似海外基金

CAREER: Understanding Collisionless Magnetic Reconnection as a Fundamental Heliospheric Process
职业:理解无碰撞磁重联作为基本的日光层过程
  • 批准号:
    2338131
  • 财政年份:
    2024
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant
Can we heal people using electricity? Developing fundamental understanding and bioelectronic devices to exploit bioelectricity in bioengineering.
我们可以用电来治愈人们吗?
  • 批准号:
    MR/X032159/1
  • 财政年份:
    2024
  • 资助金额:
    $ 100万
  • 项目类别:
    Fellowship
CAS-Climate: Understanding the fundamental redox chemistry and transport of chloroaluminate anions in ionic liquid electrolytes to develop earth-abundant aluminum ion battery
CAS-Climate:了解离子液体电解质中氯铝酸盐阴离子的基本氧化还原化学和传输,以开发地球上丰富的铝离子电池
  • 批准号:
    2427215
  • 财政年份:
    2024
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
Understanding Fundamental Mechanisms that Underlie Nano-Neuro Interactions
了解纳米神经相互作用的基本机制
  • 批准号:
    2331330
  • 财政年份:
    2024
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
CAREER: Towards a Fundamental Understanding of Interface Strain-Driven Pseudomorphic Phase Transformation in Multilayered Nanocomposites
职业生涯:对多层纳米复合材料中界面应变驱动的赝晶相变有一个基本的了解
  • 批准号:
    2340965
  • 财政年份:
    2024
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
Fundamental understanding of turbulent flow over fluid-saturated complex porous media
对流体饱和复杂多孔介质上湍流的基本理解
  • 批准号:
    EP/W03350X/1
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
    Research Grant
Fundamental Understanding of Chemical Complexity on Crack Tip Plasticity of Refractory Complex Concentrated Alloys
化学复杂性对难熔复合浓缩合金裂纹尖端塑性的基本认识
  • 批准号:
    2316762
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant
Fundamental Understanding of Turbulent Flow over Fluid-Saturated Complex Porous Media
对流体饱和复杂多孔介质上湍流的基本理解
  • 批准号:
    EP/W033550/1
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
    Research Grant
Toward Improved Understanding of Fundamental Processes Controlling the Size-Resolved Properties of Particles in the Stratosphere
提高对控制平流层粒子尺寸分辨特性的基本过程的理解
  • 批准号:
    2325458
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant
ERI: Increasing the Fundamental Understanding of the Auxetic Behavior of Graphene Oxide Membranes
ERI:增加对氧化石墨烯膜拉胀行为的基本了解
  • 批准号:
    2301838
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了