Algebraic Methods in Stable Homotopy Theory

稳定同伦理论中的代数方法

基本信息

  • 批准号:
    0404651
  • 负责人:
  • 金额:
    $ 12.98万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-07-01 至 2007-06-30
  • 项目状态:
    已结题

项目摘要

DMS-0404651Douglas C. RavenelThis proposal has two parts: Higher chromatic analogs of elliptic cohomology and finding more stable homotopy groups of spheres. The first part concerns a recent discovery by Ravenel that the Jacobians of certain algebraic curves in characteristic P have interesting 1-dimensional formal groups as formal summands. More precisely, he has examples where the the height can be any multiple of p-1. This could lead to analogs of elliptic cohomology, which takes us deeper into the chromatic tower, meaning beyond v2-periodic phenomena. It is the first example known to topologists of formal group laws of height greater than two occuring in a geometric setting. The methods used here come from algebraic geometry and number theory. The second part concerns the determination of the stable homotopy groups of spheres and the Adams-Novikov spectral sequence. This problem has been one of the central and most difficult in algebraic topology since the groups were defined in 1935. Little progress has been made in this area since the the publication of Ravenel's 1986 book (republished in 2003) "Complex Cobordism and the Stable Homotopy Groups of Spheres" which described the state of the art at the time. In it he determined the stable homotopy groups of spheres through dimension 108 for p=3 and 999 for p=5. The latter computation was a substantial improvement over prior knowledge, and neither has been improved upon since. It is generally agreed among homotopy theorists that it is not worthwhile to try to improve our knowledge of stable homotopy groups by a few stems, but that the prospect of increasing the know range by a factor of p would be worth pursuing. This possibility may be within reach now, due to a better understanding of the previously used methods of and improved computer technology.This project will help the general advance of algebraic topology, a subject which has been central to pure mathematics since its founding by Poincare a century ago. It has been a continuing source of new ideas in algebraic geometry as seen in the work of Lefschetz in the '30s, the efforts leading the proof of the Weil conjectures in the'60s and '70s, and most recently in the successful application of motivic cohomology to the Milnor conjecture by Voevodsky. It has also found numerous applications in differential geometry and theoretical physics. The University of Rochester is one of the leading centers of algebraic topology in the world.
DMS-0404651Douglas C. Ravenel这个建议有两个部分:椭圆上同调的高色类似物和寻找更稳定的球面同伦群。 第一部分是关于Ravenel最近的一个发现,即特征P中某些代数曲线的Jacobian有有趣的一维形式群作为形式和数。更准确地说,他有例子,高度可以是p-1的任何倍数。 这可能导致类似的椭圆上同调,这使我们更深入的色塔,这意味着超越v2-周期现象。 这是已知的第一个例子拓扑正式组法律的高度大于2发生在一个几何设置。这里使用的方法来自代数几何和数论。 第二部分涉及球面稳定同伦群的确定和Adams-Novikov谱序列。 这个问题一直是一个中心和最困难的代数拓扑结构,因为集团在1935年被定义。自拉文埃尔1986年出版的《复协ordism and the Stable Homotopy Groups of Spheres》一书(2003年再版)以来,这一领域的进展甚微,该书描述了当时的技术水平。 在它,他确定了稳定的同伦群领域通过尺寸108为p=3和999为p=5。 后一种计算方法是对先验知识的一个实质性改进,而且从那以后也没有改进过。 同伦理论家们普遍认为,试图通过几个词干来提高我们对稳定同伦群的认识是不值得的,但是将已知范围提高p倍的前景是值得追求的。 这种可能性可能是触手可及的现在,由于更好地了解以前使用的方法和改进的计算机技术。这个项目将有助于一般的进步代数拓扑学,一个主题一直是中央纯数学成立以来的庞加莱世纪前。 它一直是一个持续的来源,新的想法,在代数几何中看到的工作莱夫谢茨在30年代,努力导致证明的韦尔代数在60年代和70年代,最近在成功应用motivic上同调的米尔诺猜想Voevodsky。 它在微分几何和理论物理中也有许多应用。 罗切斯特大学是世界上代数拓扑学的主要研究中心之一。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Douglas Ravenel其他文献

Douglas Ravenel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Douglas Ravenel', 18)}}的其他基金

Equivariant and Chromatic Stable Homotopy Theory
等变和色稳定同伦理论
  • 批准号:
    1606623
  • 财政年份:
    2016
  • 资助金额:
    $ 12.98万
  • 项目类别:
    Standard Grant
Extending Kervaire invariant methods in stable homotopy theory
在稳定同伦理论中扩展 Kervaire 不变方法
  • 批准号:
    1307896
  • 财政年份:
    2013
  • 资助金额:
    $ 12.98万
  • 项目类别:
    Standard Grant
Chromatic stable homotopy theory
色稳定同伦理论
  • 批准号:
    0905160
  • 财政年份:
    2009
  • 资助金额:
    $ 12.98万
  • 项目类别:
    Standard Grant
Homotopy Theory and Its Applications
同伦理论及其应用
  • 批准号:
    9802516
  • 财政年份:
    1998
  • 资助金额:
    $ 12.98万
  • 项目类别:
    Continuing Grant
Harmonic Maps, Loop Groups, and Integrable Systems
调和图、环路群和可积系统
  • 批准号:
    9704443
  • 财政年份:
    1997
  • 资助金额:
    $ 12.98万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Homotopy Theory and Its Applications
数学科学:同伦理论及其应用
  • 批准号:
    9422413
  • 财政年份:
    1995
  • 资助金额:
    $ 12.98万
  • 项目类别:
    Continuing Grant
Mathematical Sciences Computing Research Environments
数学科学计算研究环境
  • 批准号:
    9305043
  • 财政年份:
    1993
  • 资助金额:
    $ 12.98万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Homotopy Theory and its Applications
数学科学:同伦理论及其应用
  • 批准号:
    9204291
  • 财政年份:
    1992
  • 资助金额:
    $ 12.98万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Homotopy Theory and Its Applications
数学科学:同伦理论及其应用
  • 批准号:
    8903178
  • 财政年份:
    1989
  • 资助金额:
    $ 12.98万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Homotopy Theory
数学科学:同伦论
  • 批准号:
    8815294
  • 财政年份:
    1988
  • 资助金额:
    $ 12.98万
  • 项目类别:
    Standard Grant

相似国自然基金

Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Development of stable coastal blue carbon distribution survey methods using satellites, observations, models, and AI
利用卫星、观测、模型和人工智能开发稳定的沿海蓝碳分布调查方法
  • 批准号:
    23H01516
  • 财政年份:
    2023
  • 资助金额:
    $ 12.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Developing High Order Stable and Efficient Methods for Long Time Simulations of Gravitational Waveforms
开发高阶稳定且有效的方法来长时间模拟引力波形
  • 批准号:
    2309609
  • 财政年份:
    2023
  • 资助金额:
    $ 12.98万
  • 项目类别:
    Standard Grant
Curvilinear Grid Adaptation with Nonlinearly Stable Flux Reconstruction High-Order Methods in Split-Form
具有非线性稳定通量重建高阶分割法的曲线网格自适应
  • 批准号:
    569781-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 12.98万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Computational methods to predict stable biologics formulations
预测稳定生物制剂配方的计算方法
  • 批准号:
    75419
  • 财政年份:
    2021
  • 资助金额:
    $ 12.98万
  • 项目类别:
    Study
Research for cultivation methods of Kudzu and development of quality evaluation method for stable supply of high quality in pueraria root.
葛栽培方法研究及品质评价方法开发,稳定供应优质葛根。
  • 批准号:
    19K06001
  • 财政年份:
    2019
  • 资助金额:
    $ 12.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A study on numerical solution methods with stable and high accuracy for large-scale linear systems
大型线性系统稳定高精度数值求解方法研究
  • 批准号:
    18K11342
  • 财政年份:
    2018
  • 资助金额:
    $ 12.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Novel ultra-stable enzymes and methods for proteomics
新型超稳定酶和蛋白质组学方法
  • 批准号:
    10010437
  • 财政年份:
    2018
  • 资助金额:
    $ 12.98万
  • 项目类别:
Investigation of novel methods of controlling output power with stable wavelength operation and modulation bandwidth enhancement by long-wavelength transistor lasers
研究长波长晶体管激光器稳定波长运行和增强调制带宽控制输出功率的新方法
  • 批准号:
    17H03247
  • 财政年份:
    2017
  • 资助金额:
    $ 12.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
CRII: RI: Distributed, Stable and Robust Topology Control: New Methods for Asymmetrically Interacting Multi-Robot Teams
CRII:RI:分布式、稳定和鲁棒的拓扑控制:非对称交互多机器人团队的新方法
  • 批准号:
    1657235
  • 财政年份:
    2017
  • 资助金额:
    $ 12.98万
  • 项目类别:
    Standard Grant
Identification of survival models that are prognostic across cohorts and stable regarding variable selection with methods of model-based optimization
通过基于模型的优化方法,识别在各队列中具有预后性且在变量选择方面稳定的生存模型
  • 批准号:
    289820878
  • 财政年份:
    2016
  • 资助金额:
    $ 12.98万
  • 项目类别:
    Research Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了