Equivariant and Chromatic Stable Homotopy Theory
等变和色稳定同伦理论
基本信息
- 批准号:1606623
- 负责人:
- 金额:$ 20.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-06-01 至 2020-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research project explores questions in algebraic topology, a branch of mathematics that concerns shapes in higher dimensions. Despite its abstract nature, algebraic topology has proven to be useful in a variety of applications, including theoretical physics, where the subject arises naturally in attempts to reconcile general relativity with quantum mechanics, and data science, where the subject has had considerable impact in the analysis of large data sets. A fifty-year-old question in the field known as the Kervaire invariant problem was solved in 2009; the answer to the question at the heart of the problem was the opposite of what most experts had expected, and surprising new techniques, potentially useful in other areas, were required in the proof. The research project aims to amplify this discovery and adapt it to further applications.The principal investigator plans to follow up on this advance in two ways. First, a book in progress is designed to make the solution methods accessible to graduate students and other interested non-experts in the field, amplifying the mathematical infrastructure in equivariant homotopy theory and category theory for the Kervaire invariant problem with illustrative examples and explanations. Second, the tools developed to solve the Kervaire invariant problem are being adapted to further applications. In particular, there is a counterpart to the problem for each prime number. The recent solution of the original, geometrically motivated, problem was for the prime 2. The algebraic analog for primes 5 and larger had been solved in the late 1970s. The algebraic problem remains open for the prime 3, and the principal investigator has a plan for solving it. In addition, the surprising nature of the solution to the 2-primary problem raises more questions than it answers, implying in particular that certain predicted patterns in the homotopy groups of spheres cannot occur. The question of what might replace them is wide open.
本研究计画探讨代数拓扑学中的问题,代数拓扑学是数学的一个分支,关注更高维度的形状。尽管它的抽象性质,代数拓扑已被证明是有用的各种应用,包括理论物理学,其中该主题自然出现在试图调和广义相对论与量子力学,和数据科学,其中该主题在大型数据集的分析中产生了相当大的影响。2009年,一个在该领域存在了50年的问题--科威尔不变量问题得到了解决;这个问题的核心答案与大多数专家的预期相反,证明过程中需要使用可能在其他领域有用的令人惊讶的新技术。 该研究项目旨在扩大这一发现并使其适用于进一步的应用。首席研究员计划通过两种方式跟进这一进展。首先,一本正在编写的书旨在使研究生和该领域其他感兴趣的非专家能够使用解决方法,放大等变同伦理论和范畴理论中的数学基础设施,为Kervaire不变量问题提供说明性的例子和解释。其次,开发的工具,以解决Kervaire不变的问题正在适应进一步的应用。特别是,对于每个素数,都有一个对应的问题。最新的解决方案的原始,几何动机,问题是为素数2。素数5和更大素数的代数类比在20世纪70年代末已经解决。这个代数问题对于素数3仍然是开放的,并且主要研究者有一个解决它的计划。此外,2-素数问题的解决方案的令人惊讶的性质引起了比它回答的更多的问题,特别是暗示某些预测的同伦群的模式不可能发生。什么可以取代他们的问题是完全开放的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Douglas Ravenel其他文献
Douglas Ravenel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Douglas Ravenel', 18)}}的其他基金
Extending Kervaire invariant methods in stable homotopy theory
在稳定同伦理论中扩展 Kervaire 不变方法
- 批准号:
1307896 - 财政年份:2013
- 资助金额:
$ 20.13万 - 项目类别:
Standard Grant
Algebraic Methods in Stable Homotopy Theory
稳定同伦理论中的代数方法
- 批准号:
0404651 - 财政年份:2004
- 资助金额:
$ 20.13万 - 项目类别:
Standard Grant
Homotopy Theory and Its Applications
同伦理论及其应用
- 批准号:
9802516 - 财政年份:1998
- 资助金额:
$ 20.13万 - 项目类别:
Continuing Grant
Harmonic Maps, Loop Groups, and Integrable Systems
调和图、环路群和可积系统
- 批准号:
9704443 - 财政年份:1997
- 资助金额:
$ 20.13万 - 项目类别:
Standard Grant
Mathematical Sciences: Homotopy Theory and Its Applications
数学科学:同伦理论及其应用
- 批准号:
9422413 - 财政年份:1995
- 资助金额:
$ 20.13万 - 项目类别:
Continuing Grant
Mathematical Sciences Computing Research Environments
数学科学计算研究环境
- 批准号:
9305043 - 财政年份:1993
- 资助金额:
$ 20.13万 - 项目类别:
Standard Grant
Mathematical Sciences: Homotopy Theory and its Applications
数学科学:同伦理论及其应用
- 批准号:
9204291 - 财政年份:1992
- 资助金额:
$ 20.13万 - 项目类别:
Continuing Grant
Mathematical Sciences: Homotopy Theory and Its Applications
数学科学:同伦理论及其应用
- 批准号:
8903178 - 财政年份:1989
- 资助金额:
$ 20.13万 - 项目类别:
Continuing Grant
Mathematical Sciences: Homotopy Theory
数学科学:同伦论
- 批准号:
8815294 - 财政年份:1988
- 资助金额:
$ 20.13万 - 项目类别:
Standard Grant
相似海外基金
Spheres of Influence: Arithmetic Geometry and Chromatic Homotopy Theory
影响范围:算术几何和色同伦理论
- 批准号:
2401472 - 财政年份:2024
- 资助金额:
$ 20.13万 - 项目类别:
Continuing Grant
Invertibility and deformations in chromatic homotopy theory
色同伦理论中的可逆性和变形
- 批准号:
2304797 - 财政年份:2023
- 资助金额:
$ 20.13万 - 项目类别:
Standard Grant
Chromatic homotopy theory, algebraic K-theory, and L-functions
色同伦理论、代数 K 理论和 L 函数
- 批准号:
2348963 - 财政年份:2023
- 资助金额:
$ 20.13万 - 项目类别:
Standard Grant
CAREER: Decomposition, duality and Picard groups in chromatic homotopy theory
职业:色同伦理论中的分解、对偶性和皮卡德群
- 批准号:
2239362 - 财政年份:2023
- 资助金额:
$ 20.13万 - 项目类别:
Continuing Grant
Chromatic homotopy theory, algebraic K-theory, and L-functions
色同伦理论、代数 K 理论和 L 函数
- 批准号:
2304719 - 财政年份:2023
- 资助金额:
$ 20.13万 - 项目类别:
Standard Grant
Thalamocortical mechanisms producing spatial chromatic contrast in mouse V1
丘脑皮质机制在小鼠 V1 中产生空间色彩对比
- 批准号:
10604752 - 财政年份:2023
- 资助金额:
$ 20.13万 - 项目类别:
Rational and equivariant phenomena in chromatic homotopy theory
色同伦理论中的有理和等变现象
- 批准号:
2304781 - 财政年份:2023
- 资助金额:
$ 20.13万 - 项目类别:
Standard Grant
Equivariant Methods in Chromatic Homotopy Theory
色同伦理论中的等变方法
- 批准号:
2313842 - 财政年份:2023
- 资助金额:
$ 20.13万 - 项目类别:
Standard Grant
CAREER: From Equivariant Chromatic Homotopy Theory to Phases of Matter: Voyage to the Edge
职业生涯:从等变色同伦理论到物质相:走向边缘的航程
- 批准号:
2143811 - 财政年份:2022
- 资助金额:
$ 20.13万 - 项目类别:
Continuing Grant
Conference on Chromatic Homotopy Theory and Related Areas
色同伦理论及相关领域会议
- 批准号:
2220741 - 财政年份:2022
- 资助金额:
$ 20.13万 - 项目类别:
Standard Grant














{{item.name}}会员




