Nonsmooth methods in optimal control theory
最优控制理论中的非光滑方法
基本信息
- 批准号:0405132
- 负责人:
- 金额:$ 18.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-08-01 至 2007-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The main thrust of this research is to study problem formulations in optimal control theory for which the extant mathematical tools are not adequately developed. The approach relies on methods of nonsmooth analysis, which is an extension of classical calculus that systematically handles derivative-like properties of functions that may not be differentiable in the usual sense. Its development was largely motivated by problems in optimization, where inequality constraints and min/max operations are ubiquitous, but which do not preserve classical differentiability. This project investigates four related problem areas. (1) Fully convex control, which is on the one hand quite special since it requires convexity assumptions in the state and velocity. But on the other hand, it is a natural generalization of the linear-quadratic regulator, which is the workhorse of optimal control in applications. Problems with state constraints, impulse trajectories, and infinite horizon will be studied from this viewpoint. (2) One-sided Lipschitz dynamics, where the data may have non-Lipschitz behavior but only in a dissipative manner. Such structure in the dynamics is present in the modeling of dry friction. (3) Time-delay problems. (4) Impulsive systems, in which the states evolve according to two time scales and can jump over short time intervals.To reflect the desirability of certain behaviors of engineered systems in preference to others, aspects of optimization are often included in mathematical models, and dynamic optimization problems arise. Optimal control theory offers deep insight into the nature of these problems. Because the world appears to have many more nonsmooth characteristics than previously imagined, new theoretical challenges in optimal control have emerged. The development of nonsmooth analysis was largely motivated by these considerations, and now consists of a substantial body of results that is being increasingly utilized by engineers. This research project will broaden the range of application of nonsmooth analytic tools, and the results will allow control engineers to employ mathematical models that are more accurate and realistic than those in current use.
本研究的主旨是研究最优控制理论中现存的数学工具还没有得到充分发展的问题。 该方法依赖于非光滑分析的方法,这是经典微积分的扩展,系统地处理在通常意义上可能不可微的函数的类似导数的性质。 它的发展很大程度上是由优化问题推动的,其中不等式约束和最小/最大运算无处不在,但不保持经典的可微性。 该项目调查了四个相关的问题领域。 (1)完全凸控制,这是一方面非常特殊,因为它需要凸性假设的状态和速度。 但另一方面,它是线性二次型调节器的自然推广,线性二次型调节器是应用中最优控制的主力。 从这个观点出发,我们将研究具有状态约束、脉冲轨迹和无限视界的问题。 (2)单侧Lipschitz动力学,其中数据可能具有非Lipschitz行为,但仅以耗散方式。 这种结构的动力学是目前在建模的干摩擦。 (3)时间延迟问题。 (4)脉冲系统,其状态按照两个时间尺度演化,并且可以在很短的时间间隔内跳跃。为了反映工程系统的某些行为优先于其他行为的可取性,数学模型中经常包含优化的方面,从而产生动态优化问题。 最优控制理论为这些问题的本质提供了深刻的见解。 由于世界似乎比以前想象的具有更多的非光滑特性,因此出现了最优控制的新理论挑战。 非光滑分析的发展在很大程度上是出于这些考虑,现在包括大量的结果,越来越多地被工程师使用。 该研究项目将拓宽非光滑分析工具的应用范围,其结果将允许控制工程师采用比目前使用的数学模型更准确和更现实的数学模型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter Wolenski其他文献
Peter Wolenski的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter Wolenski', 18)}}的其他基金
Conference on Optimal Control and Nonsmooth Analysis
最优控制与非光滑分析会议
- 批准号:
0612807 - 财政年份:2006
- 资助金额:
$ 18.4万 - 项目类别:
Standard Grant
Support for MCT'03, an International Conference on Mathematical Control Theory at LSU
支持 LSU 数学控制理论国际会议 MCT03
- 批准号:
0300959 - 财政年份:2003
- 资助金额:
$ 18.4万 - 项目类别:
Standard Grant
Fully Convex and Nonlinear Control Theory
全凸非线性控制理论
- 批准号:
9972241 - 财政年份:1999
- 资助金额:
$ 18.4万 - 项目类别:
Standard Grant
Mathematical Sciences: Nonsmooth Analysis and Control Theory
数学科学:非光滑分析与控制理论
- 批准号:
9623406 - 财政年份:1996
- 资助金额:
$ 18.4万 - 项目类别:
Standard Grant
相似国自然基金
复杂图像处理中的自由非连续问题及其水平集方法研究
- 批准号:60872130
- 批准年份:2008
- 资助金额:28.0 万元
- 项目类别:面上项目
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Variational Optimal Transport Methods for Nonlinear Filtering
非线性滤波的变分最优传输方法
- 批准号:
2318977 - 财政年份:2023
- 资助金额:
$ 18.4万 - 项目类别:
Standard Grant
Center of Research Translation on Osteoporosis Bone Anabolic Therapies
骨质疏松症骨合成代谢疗法研究转化中心
- 批准号:
10404412 - 财政年份:2023
- 资助金额:
$ 18.4万 - 项目类别:
Uncertainty aware virtual treatment planning for peripheral pulmonary artery stenosis
外周肺动脉狭窄的不确定性虚拟治疗计划
- 批准号:
10734008 - 财政年份:2023
- 资助金额:
$ 18.4万 - 项目类别:
Accelerated Neuromodulation of Prefrontal Circuitry during Clozapine Treatment
氯氮平治疗期间前额叶回路的加速神经调节
- 批准号:
10726660 - 财政年份:2023
- 资助金额:
$ 18.4万 - 项目类别:
Measuring and Learning from Care Variation in Sepsis
脓毒症护理变化的测量和学习
- 批准号:
10712986 - 财政年份:2023
- 资助金额:
$ 18.4万 - 项目类别:
Dissecting Behavioral and Neural Mechanisms of Hand Dexterity after Stroke for Effective Rehabilitation
剖析中风后手部灵活性的行为和神经机制,以实现有效康复
- 批准号:
10803644 - 财政年份:2023
- 资助金额:
$ 18.4万 - 项目类别:
Development of multinuclear MRI for image guided therapy of glioma patients
开发用于神经胶质瘤患者图像引导治疗的多核 MRI
- 批准号:
10655918 - 财政年份:2023
- 资助金额:
$ 18.4万 - 项目类别:
Modeling seizures in patients with focal epilepsy
局灶性癫痫患者的癫痫发作建模
- 批准号:
10716792 - 财政年份:2023
- 资助金额:
$ 18.4万 - 项目类别:
Use Bayesian methods to facilitate the data integration for complex clinical trials
使用贝叶斯方法促进复杂临床试验的数据集成
- 批准号:
10714225 - 财政年份:2023
- 资助金额:
$ 18.4万 - 项目类别: