Conference on Optimal Control and Nonsmooth Analysis
最优控制与非光滑分析会议
基本信息
- 批准号:0612807
- 负责人:
- 金额:$ 1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-06-01 至 2007-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award supports U.S. participants in the conference entitled, "Geometric Control and Nonsmooth Analysis," to be held June 2006 in Rome, Italy. This is an interdisciplinary conference that is comprised of over thirty talks by prominent researchers in control theory and nonlinear analysis from seven countries. Topics include Hamilton-Jacobi equations, controllability of nonlinear partial differential equations, set-valued differentials, stabilization, and variational analysis. The conference features cutting edge research topics that were pioneered and greatly impacted by H. Hermes and R. T. Rockafellar, who will be featured speakers. The meeting is held over four days and includes plenary talks by prominent mathematicians and control engineers, shorter lectures by young and emerging researchers, and moderated discussions on open problems.The research themes of the conference are control theory and optimization, which provide the theoretical foundations that underlie many modern technologies including aeronautics, biomathematics, communications, manufacturing, models of climate change, and many others. They lie at the interface between real-world applications and abstract mathematical theory required for the development of effective models. This conference actively promotes interdisciplinary opportunities for young researchers and graduate students interested in applied controls and optimization to interact with the established control and nonsmooth analysis communities. A sizable portion of this award provides support to graduate students, postdoctoral researchers, and members of under-represented groups without other means of travel support that allows them to participate in the conference. The intellectual merit is the placement of an intellectual landmark in the advancement of knowledge, comprehension, and interaction between the engineering and mathematical control theory communities. Broad dissemination of the conference papers will be assured through the publication of proceedings by a major publisher.
该奖项支持美国参加将于2006年6月在意大利罗马举行的题为“几何控制和非光滑分析”的会议。 这是一个跨学科的会议,由来自七个国家的控制理论和非线性分析领域的杰出研究人员组成。 主题包括哈密尔顿雅可比方程,非线性偏微分方程的可控性,集值微分,稳定化和变分分析。 会议的特点是前沿的研究课题,是由H。爱马仕和R. T.罗克费勒,谁将是特色发言人。 会议为期四天,包括著名数学家和控制工程师的全体会议,年轻和新兴研究人员的简短演讲,以及对开放问题的主持讨论。会议的研究主题是控制理论和优化,为许多现代技术提供理论基础,包括航空,生物数学,通信,制造,气候变化模型,和其他许多人. 它们位于现实世界应用程序和开发有效模型所需的抽象数学理论之间的界面。 本次会议积极促进对应用控制和优化感兴趣的年轻研究人员和研究生与已建立的控制和非光滑分析社区互动的跨学科机会。 该奖项的相当大一部分为研究生,博士后研究人员和代表性不足的团体成员提供支持,而没有其他旅行支持手段,使他们能够参加会议。智力价值是在知识,理解和工程和数学控制理论社区之间的互动进步的智力里程碑的位置。 将通过一家主要出版商出版会议记录来确保会议文件的广泛传播。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter Wolenski其他文献
Peter Wolenski的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter Wolenski', 18)}}的其他基金
Nonsmooth methods in optimal control theory
最优控制理论中的非光滑方法
- 批准号:
0405132 - 财政年份:2004
- 资助金额:
$ 1万 - 项目类别:
Continuing Grant
Support for MCT'03, an International Conference on Mathematical Control Theory at LSU
支持 LSU 数学控制理论国际会议 MCT03
- 批准号:
0300959 - 财政年份:2003
- 资助金额:
$ 1万 - 项目类别:
Standard Grant
Fully Convex and Nonlinear Control Theory
全凸非线性控制理论
- 批准号:
9972241 - 财政年份:1999
- 资助金额:
$ 1万 - 项目类别:
Standard Grant
Mathematical Sciences: Nonsmooth Analysis and Control Theory
数学科学:非光滑分析与控制理论
- 批准号:
9623406 - 财政年份:1996
- 资助金额:
$ 1万 - 项目类别:
Standard Grant
相似海外基金
BRITE Pivot: Learning-based Optimal Control of Streamflow with Potentially Infeasible Time-bound Constraints for Flood Mitigation
BRITE Pivot:基于学习的水流优化控制,具有可能不可行的防洪时限约束
- 批准号:
2226936 - 财政年份:2023
- 资助金额:
$ 1万 - 项目类别:
Standard Grant
Cooperative multi agent optimal adaptive control of large degree of freedom manipulators for an interdependent collaborative task
用于相互依赖的协作任务的大自由度机械臂的协作多智能体最优自适应控制
- 批准号:
2890822 - 财政年份:2023
- 资助金额:
$ 1万 - 项目类别:
Studentship
Optimal Transport Protocols for Biomolecular Machinery - Approaching the Principle Limits of Control of Microscopic Systems
生物分子机械的最佳传输协议 - 接近微观系统控制的原理极限
- 批准号:
23H01136 - 财政年份:2023
- 资助金额:
$ 1万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
On the reliability of computational algorithms in optimal control methods using highly expressive non-differentiable functions
使用高表达不可微函数的最优控制方法中计算算法的可靠性
- 批准号:
23K13359 - 财政年份:2023
- 资助金额:
$ 1万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Mathematical modeling for optimal control of BK virus infection in kidney transplant recipients
肾移植受者 BK 病毒感染最佳控制的数学模型
- 批准号:
10741703 - 财政年份:2023
- 资助金额:
$ 1万 - 项目类别:
Development of cluster-based reduced-order model for optimal feedback control of dynamic stall flow
开发基于集群的动态失速流最优反馈控制降阶模型
- 批准号:
22KJ0183 - 财政年份:2023
- 资助金额:
$ 1万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Optimal control approach to machine learning with physical explainability
具有物理可解释性的机器学习最优控制方法
- 批准号:
23H01436 - 财政年份:2023
- 资助金额:
$ 1万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
FET: Small: An Integrated Framework for the Optimal Control of Open Quantum Systems --- Theory, Quantum Algorithms, and Applications
FET:小型:开放量子系统最优控制的集成框架 --- 理论、量子算法和应用
- 批准号:
2312456 - 财政年份:2023
- 资助金额:
$ 1万 - 项目类别:
Standard Grant
RI: Small: Collaborative Research: Evolutionary Approach to Optimal Morphology and Control of Transformable Soft Robots
RI:小型:协作研究:可变形软机器人的最佳形态和控制的进化方法
- 批准号:
2325491 - 财政年份:2023
- 资助金额:
$ 1万 - 项目类别:
Standard Grant
SCH: Spine-Hip Exoskeletons with Learning-Based Optimal Control for Low Back Pain Alleviation
SCH:具有基于学习的最佳控制的脊柱-髋部外骨骼,可缓解腰痛
- 批准号:
10816884 - 财政年份:2023
- 资助金额:
$ 1万 - 项目类别: