Nonlinear Transport, Degenerate Diffusion, Critical Regularity and Self-Organized Dynamics

非线性输运、简并扩散、临界规律性和自组织动力学

基本信息

  • 批准号:
    1008397
  • 负责人:
  • 金额:
    $ 42.42万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-07-01 至 2016-06-30
  • 项目状态:
    已结题

项目摘要

The project is devoted to the following five aspects of nonlinear time-dependent problems. (i) Critical regularity in Eulerian dynamics: we will use spectral dynamics to investigate a new framework for vanishing viscosity solutions of the pressure-less Euler equations, for global regularity of the Euler-Poisson equations subject to sub-critical initial data, and the long-time regularity of the shallow-water driven by irrotational forcing. (ii) Entropy stability and well-balanced shallow-water schemes: we will develop, analyze and implement a new class of well-balanced schemes for the shallow-water equations. (iii) Self-organized dynamics: we will study the long-time behavior of models driven by velocity-alignment and address two interrelated issues. When does flocking occur with local interactions, depending on the connectivity of the underlying graph, and how is it realized in hydrodynamic models of flocking? We will also explore new models of self-organized dynamics in which inter-particle communication is scaled by their relative distance. (iv) Regularizing effects in quasi-linear transport-diffusion equations: we will continue our ongoing research on regularizing effects using velocity averaging in the concrete setups of nonlinear scalar conservation laws and certain systems which admit an entropic kinetic formulation. (v) Integro-differential equations for multi-scale decomposition of images: we will study the localization properties of new multi-scale integro-differential equations for image de-noising and de-blurring. The ultimate goal of this project is to construct, analyze and simulate time-dependent problems which are governed by nonlinear Partial Differential Equations (PDEs) and develop related novel computational schemes. The underlying equations involve nonlinear transport models, self-organized dynamics, and possibly different small scale decompositions into particle dynamics, kinetic distributions, or intensity of pixels; they arise in diverse applications, including fluid dynamics, collective behavioral sciences, and image processing and de-noising. We will focus on the unifying mathematical content of the equations, using a synergy of modern analytical tools and novel computational algorithms, to study the persistence of global features in these equations. The project provides a great educational experience through research for the graduate students and postdoctoral fellows involved.
该项目致力于以下五个方面的非线性时变问题。(i)欧拉动力学中的临界正则性:我们将使用谱动力学来研究 一个新的框架消失的粘性解的无压欧拉方程,为全球正则性的欧拉-泊松方程受亚临界初始数据,和长时间规律性的浅水驱动的无旋强迫。(ii)熵稳定性与浅水平衡格式:我们将发展、分析与实作一类新的浅水方程的浅水平衡格式。(iii)自组织动力学:我们将研究由速度对齐驱动的模型的长期行为,并解决两个相互关联的问题。根据底层图形的连通性,何时会发生局部相互作用的群集,以及如何在群集的流体动力学模型中实现? 我们还将探索自组织动力学的新模型,其中粒子间的通信是由它们的相对距离缩放。(iv)准线性输运扩散方程中的正则化效应:我们将继续我们正在进行的研究,在非线性标量守恒律和某些允许熵动力学公式的系统的具体设置中使用速度平均的正则化效应。(v)图像多尺度分解的积分微分方程:我们将研究新的多尺度积分微分方程的局部化性质,用于图像去噪和去模糊。该项目的最终目标是构建、分析和模拟由非线性偏微分方程(PDE)控制的时间依赖问题,并开发相关的新计算方案。基本方程涉及非线性传输模型,自组织动力学,以及可能不同的小尺度分解成粒子动力学,动力学分布或像素强度;它们出现在不同的应用中,包括流体动力学,集体行为科学,图像处理和去噪。我们将专注于统一的数学内容的方程,使用现代分析工具和新的计算算法的协同作用,研究这些方程的全球功能的持久性。该项目通过研究为研究生和博士后研究员提供了一个很好的教育经验。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Eitan Tadmor其他文献

Stability and spectral convergence of Fourier method for nonlinear problems: on the shortcomings of the $$2/3$$ de-aliasing method
  • DOI:
    10.1007/s00211-014-0652-y
  • 发表时间:
    2014-07-15
  • 期刊:
  • 影响因子:
    2.200
  • 作者:
    Claude Bardos;Eitan Tadmor
  • 通讯作者:
    Eitan Tadmor
Adaptive Mollifiers for High Resolution Recovery of Piecewise Smooth Data from its Spectral Information
On the stability of the unsmoothed Fourier method for hyperbolic equations
  • DOI:
    10.1007/s002110050019
  • 发表时间:
    1994-02-01
  • 期刊:
  • 影响因子:
    2.200
  • 作者:
    Jonathan Goodman;Thomas Hou;Eitan Tadmor
  • 通讯作者:
    Eitan Tadmor

Eitan Tadmor的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Eitan Tadmor', 18)}}的其他基金

Agent-Based Dynamics, Nonlinear Transport, and Social Hydrodynamics
基于主体的动力学、非线性传输和社会流体动力学
  • 批准号:
    1613911
  • 财政年份:
    2016
  • 资助金额:
    $ 42.42万
  • 项目类别:
    Standard Grant
Collaborative Research: RNMS: Kinetic description of emerging challenges in multiscale problems of natural sciences
合作研究:RNMS:自然科学多尺度问题中新出现挑战的动力学描述
  • 批准号:
    1107444
  • 财政年份:
    2012
  • 资助金额:
    $ 42.42万
  • 项目类别:
    Continuing Grant
A 2010 Workshop on Quantum-Classical Modeling of Chemical Phenomena
2010年化学现象量子经典模型研讨会
  • 批准号:
    1007674
  • 财政年份:
    2010
  • 资助金额:
    $ 42.42万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Kinetic Description of Multiscale Phenomena: Modeling, Theory and Computation
FRG:协作研究:多尺度现象的动力学描述:建模、理论和计算
  • 批准号:
    0757227
  • 财政年份:
    2008
  • 资助金额:
    $ 42.42万
  • 项目类别:
    Standard Grant
International Conference on Hyperbolic Problems: Theory, Numerics & Applications
国际双曲问题会议:理论、数值
  • 批准号:
    0742260
  • 财政年份:
    2008
  • 资助金额:
    $ 42.42万
  • 项目类别:
    Standard Grant
Regularity and Critical Thresholds in Nonlinear Transport-Diffusion Equations
非线性传输扩散方程的规律性和临界阈值
  • 批准号:
    0707949
  • 财政年份:
    2007
  • 资助金额:
    $ 42.42万
  • 项目类别:
    Continuing Grant
Regularity and Critical Thresholds Phenomena in Nonlinear Balance Laws
非线性平衡定律中的规律性和临界阈值现象
  • 批准号:
    0407704
  • 财政年份:
    2004
  • 资助金额:
    $ 42.42万
  • 项目类别:
    Continuing Grant
High Resolution Finite Difference and Spectral Algorithms for Piecewise Smooth Data
分段平滑数据的高分辨率有限差分和谱算法
  • 批准号:
    0107428
  • 财政年份:
    2001
  • 资助金额:
    $ 42.42万
  • 项目类别:
    Continuing Grant
Critical Threshold Phenomena in Nonlinear Balance Laws
非线性平衡定律中的临界阈值现象
  • 批准号:
    0107917
  • 财政年份:
    2001
  • 资助金额:
    $ 42.42万
  • 项目类别:
    Standard Grant

相似国自然基金

Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
Intraflagellar Transport运输纤毛蛋白的分子机理
  • 批准号:
    31371354
  • 批准年份:
    2013
  • 资助金额:
    90.0 万元
  • 项目类别:
    面上项目
苜蓿根瘤菌(S.meliloti)四碳二羧酸转运系统 (Dicarboxylate transport system, Dct系统)跨膜信号转导机理
  • 批准号:
    30870030
  • 批准年份:
    2008
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目

相似海外基金

Spatial Transcriptomic of Wheat Grain for ion transport (TranScripION)
小麦籽粒离子传输空间转录组学 (TranScripION)
  • 批准号:
    EP/Z000726/1
  • 财政年份:
    2025
  • 资助金额:
    $ 42.42万
  • 项目类别:
    Fellowship
Conference: Supplementary funding for the BIRS-CMO workshop Optimal Transport and Dynamics (24s5198)
会议:BIRS-CMO 研讨会最佳运输和动力学的补充资金 (24s5198)
  • 批准号:
    2401019
  • 财政年份:
    2024
  • 资助金额:
    $ 42.42万
  • 项目类别:
    Standard Grant
Electronic, transport and topological properties of frustrated magnets
受挫磁体的电子、输运和拓扑特性
  • 批准号:
    2403804
  • 财政年份:
    2024
  • 资助金额:
    $ 42.42万
  • 项目类别:
    Standard Grant
CAREER: The Contagion Science: Integration of inhaled transport mechanics principles inside the human upper respiratory tract at multi scales
职业:传染病科学:在多尺度上整合人类上呼吸道内的吸入运输力学原理
  • 批准号:
    2339001
  • 财政年份:
    2024
  • 资助金额:
    $ 42.42万
  • 项目类别:
    Continuing Grant
CAREER: Harnessing Dynamic Dipoles for Solid-State Ion Transport
职业:利用动态偶极子进行固态离子传输
  • 批准号:
    2339634
  • 财政年份:
    2024
  • 资助金额:
    $ 42.42万
  • 项目类别:
    Continuing Grant
CAREER: Thermal Transport in Polymer Nanofibers under Strain Modulation
职业:应变调制下聚合物纳米纤维的热传输
  • 批准号:
    2340208
  • 财政年份:
    2024
  • 资助金额:
    $ 42.42万
  • 项目类别:
    Continuing Grant
NSF-BSF: Collaborative Research: Solids and reactive transport processes in sewer systems of the future: modeling and experimental investigation
NSF-BSF:合作研究:未来下水道系统中的固体和反应性输送过程:建模和实验研究
  • 批准号:
    2134594
  • 财政年份:
    2024
  • 资助金额:
    $ 42.42万
  • 项目类别:
    Standard Grant
Antarctica's leaky defence to poleward heat transport
南极洲对极地热传输的防御漏洞
  • 批准号:
    DP240102358
  • 财政年份:
    2024
  • 资助金额:
    $ 42.42万
  • 项目类别:
    Discovery Projects
Global spatially explicit gridded transport model coupled with an integrated assessment model: a new-generation simulation framework for transport decarbonization strategy
全球空间明确网格交通模型与综合评估模型相结合:新一代交通脱碳战略模拟框架
  • 批准号:
    23K28290
  • 财政年份:
    2024
  • 资助金额:
    $ 42.42万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Amplifying Ion Transport at the Interfaces of Solid-State Batteries
增强固态电池界面的离子传输
  • 批准号:
    EP/Z000254/1
  • 财政年份:
    2024
  • 资助金额:
    $ 42.42万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了