Regularity and Critical Thresholds Phenomena in Nonlinear Balance Laws

非线性平衡定律中的规律性和临界阈值现象

基本信息

  • 批准号:
    0407704
  • 负责人:
  • 金额:
    $ 41.97万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-08-01 至 2007-07-31
  • 项目状态:
    已结题

项目摘要

The overall goal of this project is the study of critical regularity associated with different nonlinear balance laws. We focus on borderline cases, of interest in various applications, where intrinsic features of the solutions such as smoothness vs. generic finite-time breakdown, time decay, etc., hinge on a delicate balance between nonlinear convection and a variety of (possibly nonlinear) forcing mechanisms. Often this balance is maintained by global invariants of the flow. These include spectral invariants, which in turn lead to critical threshold phenomena, or borderline invariant regularity spaces. A main focal topic of this project is the study of balance laws governed by Eulerian dynamics. Such models show up in different contexts dictated by different forcing. Previous research developed a precise framework for studying the critical threshold phenomena for such Eulerian dynamics. Here we seek extensions to include more realistic models driven by global and non-isotropic forcing. In particular, this project investigates global regularity for multidimensional Euler-Poisson equations with sub-critical initial data and persistence of minimal regularity for Euler and Navier-Stokes equations with initial configurations in borderline regularity spaces.This research project pursues the development of mathematical tools for the understanding of fundamental properties of fluid flow and other dynamical processes. The results will have potential application for the modeling and numerical simulation of a variety of physical phenomena, including the turbulent flow of fluids, that are governed by the type of partial differential equations under study.
这个项目的总体目标是研究与不同的非线性平衡律相关的临界规律性。我们集中在各种应用中感兴趣的边界情况,其中解的内在特征,如光滑性与一般的有限时间分解、时间衰减等,取决于非线性对流和各种(可能是非线性的)强迫机制之间的微妙平衡。通常,这种平衡是由流的全局不变量维持的。这包括频谱不变量,它反过来导致临界阈值现象,或边界不变正则性空间。这个项目的一个主要焦点是研究由欧拉动力学支配的平衡律。这样的模型出现在不同的背景下,由不同的强迫决定。以前的研究为研究这种欧拉动力学的临界阈值现象建立了一个精确的框架。在这里,我们寻求扩展,以包括由全球和非各向同性强迫驱动的更现实的模型。具体地说,这个项目研究了具有亚临界初值的多维Euler-Poisson方程的全局正则性和具有边界正则性空间中初始构型的Euler和Navier-Stokes方程的最小正则性的持久性。这些结果将在各种物理现象的建模和数值模拟中有潜在的应用,包括由所研究的偏微分方程组类型所支配的流体的湍流流动。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Eitan Tadmor其他文献

Stability and spectral convergence of Fourier method for nonlinear problems: on the shortcomings of the $$2/3$$ de-aliasing method
  • DOI:
    10.1007/s00211-014-0652-y
  • 发表时间:
    2014-07-15
  • 期刊:
  • 影响因子:
    2.200
  • 作者:
    Claude Bardos;Eitan Tadmor
  • 通讯作者:
    Eitan Tadmor
Adaptive Mollifiers for High Resolution Recovery of Piecewise Smooth Data from its Spectral Information
On the stability of the unsmoothed Fourier method for hyperbolic equations
  • DOI:
    10.1007/s002110050019
  • 发表时间:
    1994-02-01
  • 期刊:
  • 影响因子:
    2.200
  • 作者:
    Jonathan Goodman;Thomas Hou;Eitan Tadmor
  • 通讯作者:
    Eitan Tadmor

Eitan Tadmor的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Eitan Tadmor', 18)}}的其他基金

Agent-Based Dynamics, Nonlinear Transport, and Social Hydrodynamics
基于主体的动力学、非线性传输和社会流体动力学
  • 批准号:
    1613911
  • 财政年份:
    2016
  • 资助金额:
    $ 41.97万
  • 项目类别:
    Standard Grant
Collaborative Research: RNMS: Kinetic description of emerging challenges in multiscale problems of natural sciences
合作研究:RNMS:自然科学多尺度问题中新出现挑战的动力学描述
  • 批准号:
    1107444
  • 财政年份:
    2012
  • 资助金额:
    $ 41.97万
  • 项目类别:
    Continuing Grant
A 2010 Workshop on Quantum-Classical Modeling of Chemical Phenomena
2010年化学现象量子经典模型研讨会
  • 批准号:
    1007674
  • 财政年份:
    2010
  • 资助金额:
    $ 41.97万
  • 项目类别:
    Standard Grant
Nonlinear Transport, Degenerate Diffusion, Critical Regularity and Self-Organized Dynamics
非线性输运、简并扩散、临界规律性和自组织动力学
  • 批准号:
    1008397
  • 财政年份:
    2010
  • 资助金额:
    $ 41.97万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Kinetic Description of Multiscale Phenomena: Modeling, Theory and Computation
FRG:协作研究:多尺度现象的动力学描述:建模、理论和计算
  • 批准号:
    0757227
  • 财政年份:
    2008
  • 资助金额:
    $ 41.97万
  • 项目类别:
    Standard Grant
International Conference on Hyperbolic Problems: Theory, Numerics & Applications
国际双曲问题会议:理论、数值
  • 批准号:
    0742260
  • 财政年份:
    2008
  • 资助金额:
    $ 41.97万
  • 项目类别:
    Standard Grant
Regularity and Critical Thresholds in Nonlinear Transport-Diffusion Equations
非线性传输扩散方程的规律性和临界阈值
  • 批准号:
    0707949
  • 财政年份:
    2007
  • 资助金额:
    $ 41.97万
  • 项目类别:
    Continuing Grant
High Resolution Finite Difference and Spectral Algorithms for Piecewise Smooth Data
分段平滑数据的高分辨率有限差分和谱算法
  • 批准号:
    0107428
  • 财政年份:
    2001
  • 资助金额:
    $ 41.97万
  • 项目类别:
    Continuing Grant
Critical Threshold Phenomena in Nonlinear Balance Laws
非线性平衡定律中的临界阈值现象
  • 批准号:
    0107917
  • 财政年份:
    2001
  • 资助金额:
    $ 41.97万
  • 项目类别:
    Standard Grant

相似海外基金

Lethal Psi: Characterising critical embolism thresholds for Amazon tree survival
Lethal Psi:描述亚马逊树木生存的关键栓塞阈值
  • 批准号:
    NE/X001164/1
  • 财政年份:
    2023
  • 资助金额:
    $ 41.97万
  • 项目类别:
    Research Grant
Determining critical thresholds of landscape disturbance in coniferous and mixed boreal forests in western Québec
确定魁北克西部针叶林和北方混交林景观干扰的临界阈值
  • 批准号:
    522914-2017
  • 财政年份:
    2021
  • 资助金额:
    $ 41.97万
  • 项目类别:
    Collaborative Research and Development Grants
Identifying critical thresholds to prioritise lake restoration
确定关键阈值以优先考虑湖泊恢复
  • 批准号:
    DP210102575
  • 财政年份:
    2021
  • 资助金额:
    $ 41.97万
  • 项目类别:
    Discovery Projects
Determining critical thresholds of landscape disturbance in coniferous and mixed boreal forests in western Québec
确定魁北克西部针叶林和北方混交林景观干扰的临界阈值
  • 批准号:
    522914-2017
  • 财政年份:
    2020
  • 资助金额:
    $ 41.97万
  • 项目类别:
    Collaborative Research and Development Grants
Determining critical thresholds of landscape disturbance in coniferous and mixed boreal forests in western Québec
确定魁北克西部针叶林和北方混交林景观干扰的临界阈值
  • 批准号:
    522914-2017
  • 财政年份:
    2019
  • 资助金额:
    $ 41.97万
  • 项目类别:
    Collaborative Research and Development Grants
Hysterisis of soil hydraulic properties and critical irrigation thresholds of crops
土壤水力特性的滞后性和作物的临界灌溉阈值
  • 批准号:
    RGPIN-2015-04947
  • 财政年份:
    2019
  • 资助金额:
    $ 41.97万
  • 项目类别:
    Discovery Grants Program - Individual
Carbonate Record of Past Thresholds, Critical Transitions and State Shifts in the Earth Systems
地球系统过去阈值、关键转变和状态转变的碳酸盐记录
  • 批准号:
    RGPIN-2015-04662
  • 财政年份:
    2019
  • 资助金额:
    $ 41.97万
  • 项目类别:
    Discovery Grants Program - Individual
Determining critical thresholds of landscape disturbance in coniferous and mixed boreal forests in western Québec
确定魁北克西部针叶林和北方混交林景观干扰的临界阈值
  • 批准号:
    522914-2017
  • 财政年份:
    2018
  • 资助金额:
    $ 41.97万
  • 项目类别:
    Collaborative Research and Development Grants
Hysterisis of soil hydraulic properties and critical irrigation thresholds of crops
土壤水力特性的滞后性和作物的临界灌溉阈值
  • 批准号:
    RGPIN-2015-04947
  • 财政年份:
    2018
  • 资助金额:
    $ 41.97万
  • 项目类别:
    Discovery Grants Program - Individual
Carbonate Record of Past Thresholds, Critical Transitions and State Shifts in the Earth Systems
地球系统过去阈值、关键转变和状态转变的碳酸盐记录
  • 批准号:
    RGPIN-2015-04662
  • 财政年份:
    2018
  • 资助金额:
    $ 41.97万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了