Regularity and Critical Thresholds in Nonlinear Transport-Diffusion Equations
非线性传输扩散方程的规律性和临界阈值
基本信息
- 批准号:0707949
- 负责人:
- 金额:$ 39.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-07-01 至 2010-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We will use modern mathematical tools complemented by novel computational simulations to examine the phenomena of regularizing effects, critical thresholds, time decay, entropy stability, and scaling. The project will address the following questions: (i) Transport-diffusion equations: How do diffusion and entropy dissipation dictate the regularizing effect in such equations? (ii) Eulerian dynamics: How does the competition between rotation and pressure forcing determine the overall stability? (iii) Chemotaxis and related bio-related transport-diffusion models: How should we interpret the solutions beyond their critical time? (iv) Hierarchical decompositions of images: How can the inverse scale space be adapted to the data for effective image processing? The principal investigator and his collaborators plan to pursue the development of new analytical and computational tools to explore transport-diffusion models, which are expected to contribute to understanding of the dynamics of realistic models in a variety of applications. The goal of this project is to study the persistence of global features in nonlinear transport-diffusion equations, which arise in a wide variety of applications. Examples include nonlinear conservation laws with degenerate diffusion, which model sedimentation, traffic flows, and data-driven applications in image processing; the ubiquitous Eulerian dynamics governing a range of phenomena from the small scale of semi-conductors through the largest scale of star formation; and chemotaxis models found in biological applications. We focus our attention on the unifying mathematical content of the underlying transport-diffusion equations. Of primary interest are problems with critical regularity properties that hinge on a borderline balance between the nonlinear convection mechanisms, the nonlinear diffusion processes, and the possibly nonlinear forcing driving such a system.
我们将使用现代数学工具,辅以新颖的计算模拟来研究正则化效应,临界阈值,时间衰减,熵稳定性和缩放的现象。 该项目将解决以下问题:(一)输运扩散方程:扩散和熵耗散如何决定这类方程的正则化效应?(ii)欧拉动力学:旋转和压力强迫之间的竞争如何决定整体稳定性?(iii)趋化性和相关的生物相关的运输扩散模型:我们应该如何解释的解决方案超出其临界时间?(iv)图像的分层分解:如何使逆尺度空间适应数据,以进行有效的图像处理?首席研究员和他的合作者计划继续开发新的分析和计算工具,以探索运输扩散模型,预计这将有助于了解各种应用中现实模型的动态。这个项目的目标是研究非线性输运-扩散方程的全局特征的持久性,这在各种各样的应用中出现。 例子包括退化扩散的非线性守恒律,其模型沉降,交通流量和图像处理中的数据驱动应用;无处不在的欧拉动力学,其控制着从小尺度的半导体到最大尺度的星星形成的一系列现象;以及在生物应用中发现的趋化性模型。 我们把我们的注意力集中在统一的数学内容的基本传输扩散方程。 主要感兴趣的是关键的规律性的问题,铰链之间的边界平衡的非线性对流机制,非线性扩散过程,并可能非线性强迫驱动这样一个系统。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eitan Tadmor其他文献
Stability and spectral convergence of Fourier method for nonlinear problems: on the shortcomings of the $$2/3$$ de-aliasing method
- DOI:
10.1007/s00211-014-0652-y - 发表时间:
2014-07-15 - 期刊:
- 影响因子:2.200
- 作者:
Claude Bardos;Eitan Tadmor - 通讯作者:
Eitan Tadmor
Adaptive Mollifiers for High Resolution Recovery of Piecewise Smooth Data from its Spectral Information
- DOI:
10.1007/s102080010019 - 发表时间:
2002-01-01 - 期刊:
- 影响因子:2.700
- 作者:
Eitan Tadmor;Jared Tanner - 通讯作者:
Jared Tanner
An <em>O</em>(<em>N</em><sup>2</sup>) method for computing the eigensystem of <em>N</em> × <em>N</em> symmetric tridiagonal matrices by the divide-and-conquer approach
- DOI:
10.1016/0024-3795(89)90385-6 - 发表时间:
1989-08-01 - 期刊:
- 影响因子:
- 作者:
Doron Gill;Eitan Tadmor - 通讯作者:
Eitan Tadmor
On the stability of the unsmoothed Fourier method for hyperbolic equations
- DOI:
10.1007/s002110050019 - 发表时间:
1994-02-01 - 期刊:
- 影响因子:2.200
- 作者:
Jonathan Goodman;Thomas Hou;Eitan Tadmor - 通讯作者:
Eitan Tadmor
Eitan Tadmor的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eitan Tadmor', 18)}}的其他基金
Agent-Based Dynamics, Nonlinear Transport, and Social Hydrodynamics
基于主体的动力学、非线性传输和社会流体动力学
- 批准号:
1613911 - 财政年份:2016
- 资助金额:
$ 39.81万 - 项目类别:
Standard Grant
Collaborative Research: RNMS: Kinetic description of emerging challenges in multiscale problems of natural sciences
合作研究:RNMS:自然科学多尺度问题中新出现挑战的动力学描述
- 批准号:
1107444 - 财政年份:2012
- 资助金额:
$ 39.81万 - 项目类别:
Continuing Grant
A 2010 Workshop on Quantum-Classical Modeling of Chemical Phenomena
2010年化学现象量子经典模型研讨会
- 批准号:
1007674 - 财政年份:2010
- 资助金额:
$ 39.81万 - 项目类别:
Standard Grant
Nonlinear Transport, Degenerate Diffusion, Critical Regularity and Self-Organized Dynamics
非线性输运、简并扩散、临界规律性和自组织动力学
- 批准号:
1008397 - 财政年份:2010
- 资助金额:
$ 39.81万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Kinetic Description of Multiscale Phenomena: Modeling, Theory and Computation
FRG:协作研究:多尺度现象的动力学描述:建模、理论和计算
- 批准号:
0757227 - 财政年份:2008
- 资助金额:
$ 39.81万 - 项目类别:
Standard Grant
International Conference on Hyperbolic Problems: Theory, Numerics & Applications
国际双曲问题会议:理论、数值
- 批准号:
0742260 - 财政年份:2008
- 资助金额:
$ 39.81万 - 项目类别:
Standard Grant
Regularity and Critical Thresholds Phenomena in Nonlinear Balance Laws
非线性平衡定律中的规律性和临界阈值现象
- 批准号:
0407704 - 财政年份:2004
- 资助金额:
$ 39.81万 - 项目类别:
Continuing Grant
High Resolution Finite Difference and Spectral Algorithms for Piecewise Smooth Data
分段平滑数据的高分辨率有限差分和谱算法
- 批准号:
0107428 - 财政年份:2001
- 资助金额:
$ 39.81万 - 项目类别:
Continuing Grant
Critical Threshold Phenomena in Nonlinear Balance Laws
非线性平衡定律中的临界阈值现象
- 批准号:
0107917 - 财政年份:2001
- 资助金额:
$ 39.81万 - 项目类别:
Standard Grant
相似海外基金
Lethal Psi: Characterising critical embolism thresholds for Amazon tree survival
Lethal Psi:描述亚马逊树木生存的关键栓塞阈值
- 批准号:
NE/X001164/1 - 财政年份:2023
- 资助金额:
$ 39.81万 - 项目类别:
Research Grant
Determining critical thresholds of landscape disturbance in coniferous and mixed boreal forests in western Québec
确定魁北克西部针叶林和北方混交林景观干扰的临界阈值
- 批准号:
522914-2017 - 财政年份:2021
- 资助金额:
$ 39.81万 - 项目类别:
Collaborative Research and Development Grants
Identifying critical thresholds to prioritise lake restoration
确定关键阈值以优先考虑湖泊恢复
- 批准号:
DP210102575 - 财政年份:2021
- 资助金额:
$ 39.81万 - 项目类别:
Discovery Projects
Determining critical thresholds of landscape disturbance in coniferous and mixed boreal forests in western Québec
确定魁北克西部针叶林和北方混交林景观干扰的临界阈值
- 批准号:
522914-2017 - 财政年份:2020
- 资助金额:
$ 39.81万 - 项目类别:
Collaborative Research and Development Grants
Determining critical thresholds of landscape disturbance in coniferous and mixed boreal forests in western Québec
确定魁北克西部针叶林和北方混交林景观干扰的临界阈值
- 批准号:
522914-2017 - 财政年份:2019
- 资助金额:
$ 39.81万 - 项目类别:
Collaborative Research and Development Grants
Hysterisis of soil hydraulic properties and critical irrigation thresholds of crops
土壤水力特性的滞后性和作物的临界灌溉阈值
- 批准号:
RGPIN-2015-04947 - 财政年份:2019
- 资助金额:
$ 39.81万 - 项目类别:
Discovery Grants Program - Individual
Carbonate Record of Past Thresholds, Critical Transitions and State Shifts in the Earth Systems
地球系统过去阈值、关键转变和状态转变的碳酸盐记录
- 批准号:
RGPIN-2015-04662 - 财政年份:2019
- 资助金额:
$ 39.81万 - 项目类别:
Discovery Grants Program - Individual
Determining critical thresholds of landscape disturbance in coniferous and mixed boreal forests in western Québec
确定魁北克西部针叶林和北方混交林景观干扰的临界阈值
- 批准号:
522914-2017 - 财政年份:2018
- 资助金额:
$ 39.81万 - 项目类别:
Collaborative Research and Development Grants
Hysterisis of soil hydraulic properties and critical irrigation thresholds of crops
土壤水力特性的滞后性和作物的临界灌溉阈值
- 批准号:
RGPIN-2015-04947 - 财政年份:2018
- 资助金额:
$ 39.81万 - 项目类别:
Discovery Grants Program - Individual
Carbonate Record of Past Thresholds, Critical Transitions and State Shifts in the Earth Systems
地球系统过去阈值、关键转变和状态转变的碳酸盐记录
- 批准号:
RGPIN-2015-04662 - 财政年份:2018
- 资助金额:
$ 39.81万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




