High Resolution Finite Difference and Spectral Algorithms for Piecewise Smooth Data

分段平滑数据的高分辨率有限差分和谱算法

基本信息

  • 批准号:
    0107428
  • 负责人:
  • 金额:
    $ 20.62万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2001
  • 资助国家:
    美国
  • 起止时间:
    2001-09-01 至 2004-08-31
  • 项目状态:
    已结题

项目摘要

We plan to develop and implement new high resolution finite difference and spectral algorithms which reduce the spurious Gibbs effects near the internal edges of piecewise regular data, and recover with high resolution the underlying information in between those edges. These are precisely the issues which defy classical methods and are of great research interest in various applications. Professors E. Tadmor (UCLA) and A. Gelb (ASU), will continue their ongoing cooperative research on the following. (i) Accurate realization of piecewise smooth data in one- and several space dimensions using edge detection and high-resolution reconstruction techniques. In this context we will develop, analyze and implement a spectrally accurate recovery procedures by combining localization based on appropriate concentration kernels which identify finitely many edges, followed by a novel two-parameter family of spectral mollifiers which recover the data between the edges with exponential accuracy. These techniques are at the heart of the modern high-resolution algorithms described below. (ii) Over the last decade, central schemes proved to be an extremely robust, all-purpose tool for solving general nonlinear convective-diffusive problems. We will integrate new recovery procedures and introduce further non-Cartesian enhancement procedures to the resolution of multidimensional central schemes. (iii) Further developments and applications of stable and spurious-free spectral viscosity algorithms. In particular, we plan to apply the new enhanced SV procedure to problems where piecewise smoothness forms due to mixing and instability (Richtmyer-Meshkov, Taylor, ...), simulations of the shallow water equations, and study of the critical threshold phenomena in mixed-type Euler-Poisson equations. Look around you: edges are everywhere. Much of the data we encounter -- from images to signals is piecewise smooth, that is, it consists of smooth pieces separated by sharp internal edges. This project proposes to continue the development of novel methods that combat the typical difficulties associated with problems containing piecewise smooth data. Specifically, we propose to extend our ongoing study of dealing with the reconstruction of piecewise smooth data from its spectral information. Here, the large scales represented by the smooth 'pieces' are resolved by a variety of non-oscillatory reconstructions. The difficulty arises with the spurious oscillations due to unresolved small scales which are localized in the neighborhood of the edges. The problem is often realized in terms of the so called 'ringing phenomena'. To this end, the location of the edges is detected and information is treated in the 'direction of smoothness', i.e., away from the detected edges. Application include the high resolution recovery of piecewise smooth data obtained in such inverse applications as magnetic resonance imaging (MRI), positron emission tomography (PET), climatology data and more. Piecewise smooth data also arise in various time dependent problems, due to spontaneous breakup in waves patterns. In this case, the difficulties become even more intricate, as one has to trace moving edges. We also plan to implement the new recovery procedures for tracing the evolution of breakdown of waves, and integrate these recovery procedures with central schemes and spectral viscosity methods -- two modern high resolution methods developed by us earlier.
我们计划开发和实施新的高分辨率有限差分和谱算法,以减少分段规则数据内部边缘附近的寄生吉布斯效应,并以高分辨率恢复这些边缘之间的基础信息。这些正是挑战经典方法的问题,并且在各种应用中具有很大的研究兴趣。 E. Tadmor 教授(加州大学洛杉矶分校)和 A. Gelb 教授(亚利桑那州立大学)将继续开展以下方面的合作研究。 (i)使用边缘检测和高分辨率重建技术在一维和多维空间中准确实现分段平滑数据。在这种情况下,我们将开发、分析和实现光谱精确的恢复程序,方法是结合基于适当浓度核的定位,识别有限多个边缘,然后是一个新颖的双参数光谱缓和器系列,以指数精度恢复边缘之间的数据。这些技术是下述现代高分辨率算法的核心。 (ii) 在过去的十年中,中心方案被证明是解决一般非线性对流扩散问题的极其强大的通用工具。我们将集成新的恢复程序,并引入进一步的非笛卡尔增强程序来解决多维中心方案。 (iii) 稳定且无杂散的光谱粘度算法的进一步开发和应用。特别是,我们计划将新的增强型 SV 程序应用于由于混合和不稳定性而形成分段平滑的问题(Richtmyer-Meshkov、Taylor 等)、浅水方程的模拟以及混合型 Euler-Poisson 方程中临界阈值现象的研究。看看你的周围:边缘无处不在。我们遇到的大部分数据(从图像到信号)都是分段平滑的,也就是说,它由由尖锐的内部边缘分隔的平滑片段组成。该项目建议继续开发新方法,以解决与包含分段平滑数据的问题相关的典型困难。具体来说,我们建议扩展我们正在进行的处理从光谱信息重建分段平滑数据的研究。在这里,由平滑“碎片”代表的大尺度通过各种非振荡重建来解决。由于位于边缘附近的未解决的小尺度而导致寄生振荡,因此出现了困难。该问题通常通过所谓的“振铃现象”来实现。为此,检测边缘的位置,并在“平滑方向”(即远离检测到的边缘)处理信息。应用包括对磁共振成像 (MRI)、正电子发射断层扫描 (PET)、气候数据等逆向应用中获得的分段平滑数据进行高分辨率恢复。由于波浪模式的自发破裂,分段平滑数据也会出现在各种与时间相关的问题中。在这种情况下,困难变得更加复杂,因为人们必须追踪移动的边缘。我们还计划实施新的恢复程序来追踪波浪分解的演化,并将这些恢复程序与中心方案和光谱粘度方法(我们之前开发的两种现代高分辨率方法)相结合。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Eitan Tadmor其他文献

Stability and spectral convergence of Fourier method for nonlinear problems: on the shortcomings of the $$2/3$$ de-aliasing method
  • DOI:
    10.1007/s00211-014-0652-y
  • 发表时间:
    2014-07-15
  • 期刊:
  • 影响因子:
    2.200
  • 作者:
    Claude Bardos;Eitan Tadmor
  • 通讯作者:
    Eitan Tadmor
Adaptive Mollifiers for High Resolution Recovery of Piecewise Smooth Data from its Spectral Information
On the stability of the unsmoothed Fourier method for hyperbolic equations
  • DOI:
    10.1007/s002110050019
  • 发表时间:
    1994-02-01
  • 期刊:
  • 影响因子:
    2.200
  • 作者:
    Jonathan Goodman;Thomas Hou;Eitan Tadmor
  • 通讯作者:
    Eitan Tadmor

Eitan Tadmor的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Eitan Tadmor', 18)}}的其他基金

Agent-Based Dynamics, Nonlinear Transport, and Social Hydrodynamics
基于主体的动力学、非线性传输和社会流体动力学
  • 批准号:
    1613911
  • 财政年份:
    2016
  • 资助金额:
    $ 20.62万
  • 项目类别:
    Standard Grant
Collaborative Research: RNMS: Kinetic description of emerging challenges in multiscale problems of natural sciences
合作研究:RNMS:自然科学多尺度问题中新出现挑战的动力学描述
  • 批准号:
    1107444
  • 财政年份:
    2012
  • 资助金额:
    $ 20.62万
  • 项目类别:
    Continuing Grant
A 2010 Workshop on Quantum-Classical Modeling of Chemical Phenomena
2010年化学现象量子经典模型研讨会
  • 批准号:
    1007674
  • 财政年份:
    2010
  • 资助金额:
    $ 20.62万
  • 项目类别:
    Standard Grant
Nonlinear Transport, Degenerate Diffusion, Critical Regularity and Self-Organized Dynamics
非线性输运、简并扩散、临界规律性和自组织动力学
  • 批准号:
    1008397
  • 财政年份:
    2010
  • 资助金额:
    $ 20.62万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Kinetic Description of Multiscale Phenomena: Modeling, Theory and Computation
FRG:协作研究:多尺度现象的动力学描述:建模、理论和计算
  • 批准号:
    0757227
  • 财政年份:
    2008
  • 资助金额:
    $ 20.62万
  • 项目类别:
    Standard Grant
International Conference on Hyperbolic Problems: Theory, Numerics & Applications
国际双曲问题会议:理论、数值
  • 批准号:
    0742260
  • 财政年份:
    2008
  • 资助金额:
    $ 20.62万
  • 项目类别:
    Standard Grant
Regularity and Critical Thresholds in Nonlinear Transport-Diffusion Equations
非线性传输扩散方程的规律性和临界阈值
  • 批准号:
    0707949
  • 财政年份:
    2007
  • 资助金额:
    $ 20.62万
  • 项目类别:
    Continuing Grant
Regularity and Critical Thresholds Phenomena in Nonlinear Balance Laws
非线性平衡定律中的规律性和临界阈值现象
  • 批准号:
    0407704
  • 财政年份:
    2004
  • 资助金额:
    $ 20.62万
  • 项目类别:
    Continuing Grant
Critical Threshold Phenomena in Nonlinear Balance Laws
非线性平衡定律中的临界阈值现象
  • 批准号:
    0107917
  • 财政年份:
    2001
  • 资助金额:
    $ 20.62万
  • 项目类别:
    Standard Grant

相似国自然基金

Finite-time Lyapunov 函数和耦合系统的稳定性分析
  • 批准号:
    11701533
  • 批准年份:
    2017
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Development of High-Performance Finite-Difference Based Computational Models for Electromagnetic Field Assessment
开发基于有限差分的高性能电磁场评估计算模型
  • 批准号:
    568474-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 20.62万
  • 项目类别:
    Postdoctoral Fellowships
Slender body theory and finite difference computations to characterize particle-fluid interactions at moderate Reynolds numbers
细长体理论和有限差分计算来表征中等雷诺数下的颗粒-流体相互作用
  • 批准号:
    2206851
  • 财政年份:
    2022
  • 资助金额:
    $ 20.62万
  • 项目类别:
    Standard Grant
NSF-CBMS Regional Research Conference, Nonstandard Finite Difference Methods: Advances in Theory and Applications
NSF-CBMS 区域研究会议,非标准有限差分方法:理论与应用进展
  • 批准号:
    1933548
  • 财政年份:
    2020
  • 资助金额:
    $ 20.62万
  • 项目类别:
    Standard Grant
Octree-Based Finite Difference Methods for Efficient Fluid Animation
基于八叉树的高效流体动画有限差分方法
  • 批准号:
    544837-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 20.62万
  • 项目类别:
    University Undergraduate Student Research Awards
Novel High Order Accurate Finite Difference Schemes Constructed via Superconvergence of Finite Element Methods
有限元超收敛构造的新型高阶精确有限差分格式
  • 批准号:
    1913120
  • 财政年份:
    2019
  • 资助金额:
    $ 20.62万
  • 项目类别:
    Standard Grant
Redundancy, retiming and data flow in compiling finite-difference applications for manycore architectures
为众核架构编译有限差分应用程序时的冗余、重定时和数据流
  • 批准号:
    2293810
  • 财政年份:
    2019
  • 资助金额:
    $ 20.62万
  • 项目类别:
    Studentship
Simulating Dynamical Systems in 3 Dimensions with Finite Difference Methods
使用有限差分法模拟 3 维动态系统
  • 批准号:
    526759-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 20.62万
  • 项目类别:
    University Undergraduate Student Research Awards
Estimation of strong ground motion using accurate and efficient mesh-free finite-difference method
使用准确高效的无网格有限差分法估计强地面运动
  • 批准号:
    17K06531
  • 财政年份:
    2017
  • 资助金额:
    $ 20.62万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of the next-generation vibroacoustic finite-difference time-domain method and application to the floor vibration simulation
下一代振动声学时域有限差分方法的发展及其在地板振动模拟中的应用
  • 批准号:
    17K14774
  • 财政年份:
    2017
  • 资助金额:
    $ 20.62万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Aeroelastic Tailoring of Low Speed Aircraft through an Implicit Finite Difference Method
通过隐式有限差分法对低速飞机进行气动弹性剪裁
  • 批准号:
    511105-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 20.62万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了