FRG: Collaborative Research: Kinetic Description of Multiscale Phenomena: Modeling, Theory and Computation

FRG:协作研究:多尺度现象的动力学描述:建模、理论和计算

基本信息

  • 批准号:
    0757227
  • 负责人:
  • 金额:
    $ 69.97万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-09-01 至 2012-08-31
  • 项目状态:
    已结题

项目摘要

Kinetic equations play a central role in many areas of mathematical physics, from micro- and nano-physics to continuum mechanics. They are an indispensable tool in the mathematical description of applications in physical and social sciences, from semi-conductors, polymers and plasma to traffic networking and swarming. The ultimate goal of this proposal is to develop novel analytical and numerical methods based on kinetic descriptions of complex phenomena with multiple scales and with a wide range of applications. The objective is to achieve a better understanding of problems which are in the forefront of current research and to contribute to the solution of long-standing problems by synergetic collaboration of theory, modeling and numerics. To this end, this Focus Research Group (FRG) will provide a platform, led by leading researchers from Universities of Maryland, Brown, Iowa State, Wisconsin-Madison, Arizona State, Austin-Texas and Toulouse, France, who will merge their expertise in the construction, analysis and implementation of kinetic descriptions for a selected suite of problems with crossing scales from quantum and micro scales to the macro scales. Topics to be discussed include kinetic descriptions of microscopic and quantum phenomena, and kinetic descriptions of macroscopic phenomena. As a recent novel example for the kinetic methodology we will use kinetic descriptions to study hyperbolic flows for complex supply chains. The theoretical and modeling aspects of this research program, on both microscopic and macroscopic scales, will be integrated with kinetic-based numerical methods for capturing ``smaller scales phenomena".The rationale behind this proposal is a timely effort to address several important issues in modern applied mathematics. Kinetic theories are not new. Yet, there have been many major developments in kinetic modeling, kinetic theories and related numerical methods, with the potential for a considerable impact on emerging new fields in physical and social sciences. The proposed effort will significantly strengthen the leading role that the US researchers can play in pursuing cutting-edge research and training a new generation of applied mathematicians in this important field. We expect this project to contribute to the development of scientific workforce by advanced training for doctoral and postdoctoral researchers and by providing a platform for interdisciplinary interactions with researchers from related disciplines. Internal and external interactions will be maintained through synergetic collaborations which will come to fruition during the three annual workshops to be held in Maryland (Year 1), France and Brown (Year 2), and Wisconsin (Year 3). International meetings will be held as part of a series of interdisciplinary workshops organized by the Center for Scientific Computation and Mathematical Modeling (CSCAMM) at the University of Maryland. Project researchers will collaborate with the DOE Center for Multiscale Plasma Dynamics in CSCAMM, the DOE Ames Laboratory at Iowa State University, and the Institute for Computational Engineering and Sciences (ICES) at UT Austin.
动力学方程在数学物理的许多领域中发挥着核心作用,从微米和纳米物理到连续介质力学。它们是物理和社会科学应用的数学描述中不可或缺的工具,从半导体、聚合物和等离子体到交通网络和集群。该提案的最终目标是开发基于多尺度和广泛应用的复杂现象的动力学描述的新颖的分析和数值方法。目的是更好地理解当前研究的前沿问题,并通过理论、建模和数值的协同合作为解决长期存在的问题做出贡献。为此,该焦点研究小组(FRG)将提供一个平台,由来自马里兰大学、布朗大学、爱荷华州立大学、威斯康星大学麦迪逊分校、亚利桑那州立大学、德克萨斯大学奥斯汀分校和法国图卢兹大学的顶尖研究人员领导,他们将融合他们在构建、分析和实施动力学描述方面的专业知识,以解决从量子和微观尺度到宏观尺度的跨尺度问题。讨论的主题包括微观和量子现象的动力学描述,以及宏观现象的动力学描述。作为动力学方法论的最新示例,我们将使用动力学描述来研究复杂供应链的双曲流。该研究计划的理论和建模方面,在微观和宏观尺度上,将与基于动力学的数值方法相结合,以捕获“较小尺度的现象”。该提案背后的基本原理是及时努力解决现代应用数学中的几个重要问题。动力学理论并不新鲜。然而,动力学建模、动力学理论和相关领域已经有了许多重大发展。 数值方法,有可能对物理和社会科学新兴领域产生相当大的影响。拟议的努力将显着加强美国研究人员在这一重要领域进行尖端研究和培养新一代应用数学家方面可以发挥的主导作用。我们期望该项目通过对博士和博士后研究人员的高级培训以及提供跨学科互动的平台,为科学劳动力的发展做出贡献。 相关学科的研究人员。将通过协同合作来维持内部和外部互动,这些合作将在马里兰州(第一年)、法国和布朗(第二年)以及威斯康星州(第三年)举行的三个年度研讨会期间取得成果。国际会议将作为马里兰大学科学计算和数学建模中心 (CSCAMM) 组织的一系列跨学科研讨会的一部分举行。项目 研究人员将与 CSCAMM 的 DOE 多尺度等离子体动力学中心、爱荷华州立大学的 DOE Ames 实验室以及 UT Austin 的计算工程与科学研究所 (ICES) 合作。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Eitan Tadmor其他文献

Stability and spectral convergence of Fourier method for nonlinear problems: on the shortcomings of the $$2/3$$ de-aliasing method
  • DOI:
    10.1007/s00211-014-0652-y
  • 发表时间:
    2014-07-15
  • 期刊:
  • 影响因子:
    2.200
  • 作者:
    Claude Bardos;Eitan Tadmor
  • 通讯作者:
    Eitan Tadmor
Adaptive Mollifiers for High Resolution Recovery of Piecewise Smooth Data from its Spectral Information
On the stability of the unsmoothed Fourier method for hyperbolic equations
  • DOI:
    10.1007/s002110050019
  • 发表时间:
    1994-02-01
  • 期刊:
  • 影响因子:
    2.200
  • 作者:
    Jonathan Goodman;Thomas Hou;Eitan Tadmor
  • 通讯作者:
    Eitan Tadmor

Eitan Tadmor的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Eitan Tadmor', 18)}}的其他基金

Agent-Based Dynamics, Nonlinear Transport, and Social Hydrodynamics
基于主体的动力学、非线性传输和社会流体动力学
  • 批准号:
    1613911
  • 财政年份:
    2016
  • 资助金额:
    $ 69.97万
  • 项目类别:
    Standard Grant
Collaborative Research: RNMS: Kinetic description of emerging challenges in multiscale problems of natural sciences
合作研究:RNMS:自然科学多尺度问题中新出现挑战的动力学描述
  • 批准号:
    1107444
  • 财政年份:
    2012
  • 资助金额:
    $ 69.97万
  • 项目类别:
    Continuing Grant
A 2010 Workshop on Quantum-Classical Modeling of Chemical Phenomena
2010年化学现象量子经典模型研讨会
  • 批准号:
    1007674
  • 财政年份:
    2010
  • 资助金额:
    $ 69.97万
  • 项目类别:
    Standard Grant
Nonlinear Transport, Degenerate Diffusion, Critical Regularity and Self-Organized Dynamics
非线性输运、简并扩散、临界规律性和自组织动力学
  • 批准号:
    1008397
  • 财政年份:
    2010
  • 资助金额:
    $ 69.97万
  • 项目类别:
    Continuing Grant
International Conference on Hyperbolic Problems: Theory, Numerics & Applications
国际双曲问题会议:理论、数值
  • 批准号:
    0742260
  • 财政年份:
    2008
  • 资助金额:
    $ 69.97万
  • 项目类别:
    Standard Grant
Regularity and Critical Thresholds in Nonlinear Transport-Diffusion Equations
非线性传输扩散方程的规律性和临界阈值
  • 批准号:
    0707949
  • 财政年份:
    2007
  • 资助金额:
    $ 69.97万
  • 项目类别:
    Continuing Grant
Regularity and Critical Thresholds Phenomena in Nonlinear Balance Laws
非线性平衡定律中的规律性和临界阈值现象
  • 批准号:
    0407704
  • 财政年份:
    2004
  • 资助金额:
    $ 69.97万
  • 项目类别:
    Continuing Grant
High Resolution Finite Difference and Spectral Algorithms for Piecewise Smooth Data
分段平滑数据的高分辨率有限差分和谱算法
  • 批准号:
    0107428
  • 财政年份:
    2001
  • 资助金额:
    $ 69.97万
  • 项目类别:
    Continuing Grant
Critical Threshold Phenomena in Nonlinear Balance Laws
非线性平衡定律中的临界阈值现象
  • 批准号:
    0107917
  • 财政年份:
    2001
  • 资助金额:
    $ 69.97万
  • 项目类别:
    Standard Grant

相似海外基金

FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
  • 批准号:
    2244978
  • 财政年份:
    2023
  • 资助金额:
    $ 69.97万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245017
  • 财政年份:
    2023
  • 资助金额:
    $ 69.97万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245111
  • 财政年份:
    2023
  • 资助金额:
    $ 69.97万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245077
  • 财政年份:
    2023
  • 资助金额:
    $ 69.97万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2244879
  • 财政年份:
    2023
  • 资助金额:
    $ 69.97万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: New Birational Invariants
FRG:合作研究:新的双理性不变量
  • 批准号:
    2245171
  • 财政年份:
    2023
  • 资助金额:
    $ 69.97万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2403764
  • 财政年份:
    2023
  • 资助金额:
    $ 69.97万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245021
  • 财政年份:
    2023
  • 资助金额:
    $ 69.97万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245097
  • 财政年份:
    2023
  • 资助金额:
    $ 69.97万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245147
  • 财政年份:
    2023
  • 资助金额:
    $ 69.97万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了