Machine Learning for Tomorrow: Efficient, Flexible, Robust and Automated
面向未来的机器学习:高效、灵活、稳健和自动化
基本信息
- 批准号:EP/T005637/1
- 负责人:
- 金额:$ 208.89万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2020
- 资助国家:英国
- 起止时间:2020 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Artificial intelligence systems have recently led to significant advances in the state-of-the-art in downstream fields including computer vision, speech and natural language processing, and game playing. Although impressive, these advances mask a set of fundamental limitations of the underlying machine learning technology that need to be addressed to unlock gains in a wide variety of applications relevant to industry and society. These limitations come in four main forms. First current approaches are data-inefficient requiring extremely large and painstakingly curated datasets. Second, they are inflexible solving single tasks that are fixed through time. Third, the current approaches are brittle as performance can degrade catastrophically in the face of noise, missing data or adversarially selected data points. Fourth, the approaches are only semi-automated requiring an expert to design and tune them. These limitations mean that many important application domains are currently out of reach. For example, in medicine we typically have only small and noisy datasets which requires data-efficient and robust machine learning. Providing machine learning as a service requires fully-automated machine learning. This Prosperity Partnership will develop machine learning that is data-efficient, robust, flexible and automated by leveraging recently developed technology from the University of Cambridge's Machine Learning Group and deep expertise from Microsoft Research Cambridge. This partnership has identified a unique testbed of impactful application domains: health, enterprise tools and games development. This research programme is central to realising Microsoft's vision to empower every developer, organization and individual to innovate and transform the world with AI. Moreover, this area of immediate and wide-ranging national importance, and provides pathways to impact by partnering with one of the world's largest technology companies.
人工智能系统最近在下游领域取得了重大进展,包括计算机视觉,语音和自然语言处理以及游戏。尽管这些进步令人印象深刻,但它们掩盖了底层机器学习技术的一系列基本局限性,需要解决这些局限性,才能在与工业和社会相关的各种应用中获得收益。这些限制主要有四种形式。首先,目前的方法是数据效率低下的,需要非常大和精心策划的数据集。其次,他们在解决单一任务时不够灵活,这些任务是随着时间的推移而固定的。第三,目前的方法是脆弱的,因为性能可能会在面对噪声、丢失数据或相反选择的数据点时灾难性地下降。第四,这些方法只是半自动化的,需要专家来设计和调整它们。这些限制意味着许多重要的应用领域目前还无法实现。例如,在医学中,我们通常只有小而嘈杂的数据集,这需要数据高效和强大的机器学习。将机器学习作为服务提供需要全自动化的机器学习。该繁荣合作伙伴关系将利用剑桥大学机器学习小组最近开发的技术和微软研究院剑桥的深厚专业知识,开发数据高效、强大、灵活和自动化的机器学习。该合作伙伴关系确定了一个独特的有影响力的应用领域测试平台:健康,企业工具和游戏开发。这项研究计划是实现微软愿景的核心,即让每个开发人员、组织和个人都能通过人工智能创新和改造世界。此外,这一领域具有直接和广泛的国家重要性,并通过与世界上最大的技术公司之一合作,提供了产生影响的途径。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
FiT: Parameter Efficient Few-shot Transfer Learning for Personalized and Federated Image Classification
- DOI:10.48550/arxiv.2206.08671
- 发表时间:2022-06
- 期刊:
- 影响因子:0
- 作者:Aliaksandra Shysheya;J. Bronskill;Massimiliano Patacchiola;Sebastian Nowozin;Richard E. Turner
- 通讯作者:Aliaksandra Shysheya;J. Bronskill;Massimiliano Patacchiola;Sebastian Nowozin;Richard E. Turner
Memory Efficient Meta-Learning with Large Images
- DOI:
- 发表时间:2021-07
- 期刊:
- 影响因子:0
- 作者:J. Bronskill;Daniela Massiceti;Massimiliano Patacchiola;Katja Hofmann;Sebastian Nowozin;Richard E. Turner
- 通讯作者:J. Bronskill;Daniela Massiceti;Massimiliano Patacchiola;Katja Hofmann;Sebastian Nowozin;Richard E. Turner
How Tight Can PAC-Bayes be in the Small Data Regime?
PAC-Bayes 在小数据制度中可以有多严格?
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Foong A.Y.K.
- 通讯作者:Foong A.Y.K.
VAEM: a Deep Generative Model for Heterogeneous Mixed Type Data
- DOI:
- 发表时间:2020-06
- 期刊:
- 影响因子:0
- 作者:Chao Ma-;Sebastian Tschiatschek;José Miguel Hernández-Lobato;Richard E. Turner;Cheng Zhang
- 通讯作者:Chao Ma-;Sebastian Tschiatschek;José Miguel Hernández-Lobato;Richard E. Turner;Cheng Zhang
ORBIT: A Real-World Few-Shot Dataset for Teachable Object Recognition
- DOI:10.1109/iccv48922.2021.01064
- 发表时间:2021-04
- 期刊:
- 影响因子:0
- 作者:Daniela Massiceti;L. Zintgraf;J. Bronskill;Lida Theodorou;Matthew Tobias Harris;Edward Cutrell;C. Morrison;Katja Hofmann;Simone Stumpf
- 通讯作者:Daniela Massiceti;L. Zintgraf;J. Bronskill;Lida Theodorou;Matthew Tobias Harris;Edward Cutrell;C. Morrison;Katja Hofmann;Simone Stumpf
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Richard Turner其他文献
Minority opinion: CT screening for lung cancer.
少数意见:肺癌CT筛查。
- DOI:
10.1097/01.rti.0000189989.65271.79 - 发表时间:
2005 - 期刊:
- 影响因子:3.3
- 作者:
C. Henschke;J. Austin;Nathaniel Berlin;T. Bauer;S. Giunta;Fred Gannis;M. Kalafer;S. Kopel;Albert Miller;H. Pass;H. Roberts;R. Shah;D. Shaham;Michael John Smith;S. Sone;Richard Turner;D. Yankelevitz;J. Zulueta - 通讯作者:
J. Zulueta
Gastric cancer gets the run-around
胃癌被四处推诿。
- DOI:
10.1038/nm0502-449 - 发表时间:
2002-05-01 - 期刊:
- 影响因子:50.000
- 作者:
Richard Turner - 通讯作者:
Richard Turner
Call for papers—genetics
- DOI:
10.1016/s0140-6736(10)60451-5 - 发表时间:
2010-03 - 期刊:
- 影响因子:0
- 作者:
Richard Turner - 通讯作者:
Richard Turner
Chest trauma in Far North Queensland: alcohol management can make a difference
昆士兰远北地区的胸部创伤:酒精管理可以发挥作用
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:3.5
- 作者:
S. Jennings;R. Whitaker;Richard Turner - 通讯作者:
Richard Turner
The New Zealand Reanalysis (NZRA)
新西兰再分析 (NZRA)
- DOI:
10.2307/27226715 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Amir Pirooz;S. Moore;T. Carey;Richard Turner;Chun - 通讯作者:
Chun
Richard Turner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Richard Turner', 18)}}的其他基金
Nanoporous polymer particles and gels containing functionalized semi-rigid copolymer structures
含有官能化半刚性共聚物结构的纳米孔聚合物颗粒和凝胶
- 批准号:
1609379 - 财政年份:2016
- 资助金额:
$ 208.89万 - 项目类别:
Standard Grant
Machine Learning for Hearing Aids: Intelligent Processing and Fitting
助听器机器学习:智能处理和验配
- 批准号:
EP/M026957/1 - 财政年份:2015
- 资助金额:
$ 208.89万 - 项目类别:
Research Grant
Unifying audio signal processing and machine learning: a fundamental framework for machine hearing
统一音频信号处理和机器学习:机器听力的基本框架
- 批准号:
EP/L000776/1 - 财政年份:2013
- 资助金额:
$ 208.89万 - 项目类别:
Research Grant
Sterically Congested and Stiffened Alternating Copolymers: Synthesis, Solution and Solid-State Properties
空间拥挤和硬化交替共聚物:合成、溶液和固态特性
- 批准号:
1206409 - 财政年份:2012
- 资助金额:
$ 208.89万 - 项目类别:
Standard Grant
Probabilistic Auditory Scene Analysis
概率听觉场景分析
- 批准号:
EP/G050821/1 - 财政年份:2010
- 资助金额:
$ 208.89万 - 项目类别:
Fellowship
Precisely Functionalized Alternating Copolymers Based on Substituted Stilbene Monomers
基于取代二苯乙烯单体的精确官能化交替共聚物
- 批准号:
0905231 - 财政年份:2009
- 资助金额:
$ 208.89万 - 项目类别:
Standard Grant
Improvement of Instruction in Marine Ecology
海洋生态学教学的改进
- 批准号:
7814013 - 财政年份:1978
- 资助金额:
$ 208.89万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
- 批准号:62003314
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
- 批准号:61902016
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
- 批准号:61806040
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
- 批准号:51769027
- 批准年份:2017
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
- 批准号:61573081
- 批准年份:2015
- 资助金额:64.0 万元
- 项目类别:面上项目
基于有向超图的大型个性化e-learning学习过程模型的自动生成与优化
- 批准号:61572533
- 批准年份:2015
- 资助金额:66.0 万元
- 项目类别:面上项目
E-Learning中学习者情感补偿方法的研究
- 批准号:61402392
- 批准年份:2014
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Understanding the Impact of Outdoor Science and Environmental Learning Experiences Through Community-Driven Outcomes
通过社区驱动的成果了解户外科学和环境学习体验的影响
- 批准号:
2314075 - 财政年份:2024
- 资助金额:
$ 208.89万 - 项目类别:
Continuing Grant
Integrating Self-Regulated Learning Into STEM Courses: Maximizing Learning Outcomes With The Success Through Self-Regulated Learning Framework
将自我调节学习融入 STEM 课程:通过自我调节学习框架取得成功,最大化学习成果
- 批准号:
2337176 - 财政年份:2024
- 资助金额:
$ 208.89万 - 项目类别:
Standard Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 208.89万 - 项目类别:
Continuing Grant
CAREER: Closing the Loop between Learning and Communication for Assistive Robot Arms
职业:关闭辅助机器人手臂的学习和交流之间的循环
- 批准号:
2337884 - 财政年份:2024
- 资助金额:
$ 208.89万 - 项目类别:
Standard Grant
CAREER: Adaptive Deep Learning Systems Towards Edge Intelligence
职业:迈向边缘智能的自适应深度学习系统
- 批准号:
2338512 - 财政年份:2024
- 资助金额:
$ 208.89万 - 项目类别:
Continuing Grant
CAREER: Data-Enabled Neural Multi-Step Predictive Control (DeMuSPc): a Learning-Based Predictive and Adaptive Control Approach for Complex Nonlinear Systems
职业:数据支持的神经多步预测控制(DeMuSPc):一种用于复杂非线性系统的基于学习的预测和自适应控制方法
- 批准号:
2338749 - 财政年份:2024
- 资助金额:
$ 208.89万 - 项目类别:
Standard Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 208.89万 - 项目类别:
Continuing Grant
RII Track-4:NSF: HEAL: Heterogeneity-aware Efficient and Adaptive Learning at Clusters and Edges
RII Track-4:NSF:HEAL:集群和边缘的异质性感知高效自适应学习
- 批准号:
2327452 - 财政年份:2024
- 资助金额:
$ 208.89万 - 项目类别:
Standard Grant
RII Track-4:NSF: Physics-Informed Machine Learning with Organ-on-a-Chip Data for an In-Depth Understanding of Disease Progression and Drug Delivery Dynamics
RII Track-4:NSF:利用器官芯片数据进行物理信息机器学习,深入了解疾病进展和药物输送动力学
- 批准号:
2327473 - 财政年份:2024
- 资助金额:
$ 208.89万 - 项目类别:
Standard Grant
Collaborative Research: NCS-FR: Individual variability in auditory learning characterized using multi-scale and multi-modal physiology and neuromodulation
合作研究:NCS-FR:利用多尺度、多模式生理学和神经调节表征听觉学习的个体差异
- 批准号:
2409652 - 财政年份:2024
- 资助金额:
$ 208.89万 - 项目类别:
Standard Grant