CMG: Mathematical Modeling of the Dynamics of Multi-scale Phenomena During Folding and Fracturing of Sedimentary Rocks

CMG:沉积岩褶皱和破裂过程中多尺度现象动力学的数学模型

基本信息

  • 批准号:
    0417521
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-08-01 至 2011-07-31
  • 项目状态:
    已结题

项目摘要

In this project, supported by the Collaborations in Mathematical Geosciences Program (CMG), the investigators are: 1) characterizing the geometric shapes of km-scale folded sedimentary strata using Airborne Laser Swath Mapping (ALSM) data and the principles of differential geometry; 2) investigating the dynamics of the folding process using continuum mechanics and Finite Element Methods (FEM); and 3) studying the physical interactions between km-scale folds and m-scale fractures within them using fracture and damage mechanics. Their underlying hypothesis is that the 3D shape of folded strata adequately constrains the internal deformation such that the orientation and spatial density of m-scale fractures can be predicted using these shapes. The study was motivated by the unprecedented opportunity to characterize fold shapes with decimeter precision using ALSM data and high resolution digital photography acquired by the NSF-sponsored National Center for Airborne Laser Mapping (NCALM), operated jointly by the University of Florida and the University of California. The folds selected for this study are Sheep Mountain Anticline, Wyoming, and Raplee Ridge Monocline, Utah.The team addresses three CMG theme areas: 1) mathematical modeling of large, complex geosystems; 2) analyzing large geoscience data sets; and 3) modeling geosystems with a broad range of interacting scales. The team of principal investigators includes a geoscientist with expertise in structural geology, a mathematician with expertise in differential geometry, and a civil engineer with expertise in computational mechanics. The broader impacts of this investigation stem from the fact that folds are common traps for subsurface fluids, and fractures in hydrocarbon reservoirs and groundwater aquifers are known to be conduits for fluid flow. In the environmental arena folds are being evaluated as potential reservoirs for excess CO2 storage. Furthermore, active faults commonly are associated with folds, so the mitigation of earthquake hazards requires a better understanding of the folding process. The intellectual merits of this investigation include the facts that: 1) applications of differential geometry to geological problems are rare, yet have great promise; 2) strain localization by fracturing during folding is ripe for a new approach heralded by recent advances in computational mechanics; 3) the research involves innovative applications of new technology (ALSM) that promise unprecedented data quantities and precision.
本项目由数学地球科学合作计划(CMG)资助,研究人员:1)利用机载激光测绘(ALSM)数据和微分几何原理表征千米尺度褶皱沉积地层的几何形状;2)利用连续介质力学和有限元方法研究折叠过程的动力学;3)利用断裂损伤力学研究km尺度褶皱与m尺度裂缝之间的物理相互作用。他们的基本假设是,褶皱地层的三维形状充分限制了内部变形,因此可以利用这些形状来预测m级裂缝的方向和空间密度。这项研究的动机是前所未有的机会,利用ALSM数据和由美国国家科学基金会赞助的国家航空激光测绘中心(NCALM)获得的高分辨率数码照片,以分米精度描绘褶皱形状。该中心由佛罗里达大学和加利福尼亚大学联合运营。本研究选择的褶皱是怀俄明州的绵羊山背斜和犹他州的拉普利岭单斜。该团队解决了三个CMG主题领域:1)大型复杂地球系统的数学建模;2)分析大型地球科学数据集;3)模拟具有广泛相互作用尺度的地球系统。主要研究团队包括一位具有构造地质学专长的地球科学家,一位具有微分几何专长的数学家,以及一位具有计算力学专长的土木工程师。这项研究的广泛影响源于褶皱是地下流体的常见圈闭,而油气藏和地下水含水层中的裂缝是流体流动的管道。在环境领域,褶皱被评价为储存过量二氧化碳的潜在储集层。此外,活动断层通常与褶皱有关,因此减轻地震危险需要更好地了解褶皱过程。这项研究的智力价值包括以下事实:1)微分几何在地质问题上的应用很少,但有很大的前景;2)计算力学的最新进展预示着在折叠过程中通过破裂进行应变局部化的新方法已经成熟;3)研究涉及新技术(ALSM)的创新应用,承诺前所未有的数据量和精度。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Pollard其他文献

Asymmetric synthesis of a potent hNK-1 receptor antagonist (特集号 プロセス化学の最前線)
强效 hNK-1 受体拮抗剂的不对称合成(特刊:工艺化学前沿)
  • DOI:
    10.1002/chin.201149265
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nobuyoshi Yasuda;Artis Klapars;Yoshinori Kohmura;R. Kevin;H. Ishibashi;David Pollard;Akihiro Takezawa;H. Jacob;J. W. Debra;Chen Cheng;Toshiaki Mase
  • 通讯作者:
    Toshiaki Mase
Numerical modeling of valley glacier stagnation as a paleoclimatic indicator
  • DOI:
    10.1016/j.yqres.2009.09.006
  • 发表时间:
    2010-03-01
  • 期刊:
  • 影响因子:
  • 作者:
    David A. Vacco;Richard B. Alley;David Pollard;David B. Reusch
  • 通讯作者:
    David B. Reusch
On continental-scale hydrologi
大陆尺度水文
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhongbo Yu*;David Pollard
  • 通讯作者:
    David Pollard
Determination of Fe Content of Some Food Items by Flame Atomic Absorption Spectroscopy (FAAS): A Guided-Inquiry Learning Experience in Instrumental Analysis Laboratory
采用火焰原子吸收光谱法 (FAAS) 测定某些食品中的铁含量:仪器分析实验室的引导式探究学习体验
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. O. Fakayode;A. King;Mamudu Yakubu;Abdul K. Mohammed;David Pollard
  • 通讯作者:
    David Pollard
Enantioselective, biocatalytic reduction of 3-substituted cyclopentenones: application to the asymmetric synthesis of an hNK-1 receptor antagonist.
3-取代环戊烯酮的对映选择性生物催化还原:应用于 hNK-1 受体拮抗剂的不对称合成。
  • DOI:
    10.1021/ol1030348
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    K. Campos;Artis Klapars;Yoshinori Kohmura;David Pollard;H. Ishibashi;S. Kato;Akihiro Takezawa;Jacob H. Waldman;D. J. Wallace;Cheng;N. Yasuda
  • 通讯作者:
    N. Yasuda

David Pollard的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Pollard', 18)}}的其他基金

Collaborative Research: PREEVENTS Track 2: Thresholds and envelopes of rapid ice-sheet retreat and sea-level rise: reducing uncertainty in coastal flood hazards
合作研究:预防事件轨道 2:冰盖快速消退和海平面上升的阈值和范围:减少沿海洪水灾害的不确定性
  • 批准号:
    1663693
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: Assessing the Global Climate Response to Melting of the Antarctic Ice Sheet
合作研究:评估全球气候对南极冰盖融化的反应
  • 批准号:
    1443394
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Bipolar Coupling of late Quaternary Ice Sheet Variability
合作研究:晚第四纪冰盖变化的双极耦合
  • 批准号:
    1341394
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Reconciling Different Deformation Mechanisms in Adjacent Sedimentary Lithologies at Raplee and Comb Folds, Monument Upwarp, UT
协调 Raplee 和梳状褶皱相邻沉积岩性中的不同变形机制,Monument Upwarp,犹他州
  • 批准号:
    1250447
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: P2C2--The Oligocene-Miocene Boundary: Carbon-Dioxide (CO2) Sensitivity and Ice Sheet Hysteresis
合作研究:P2C2——渐新世-中新世边界:二氧化碳(CO2)敏感性和冰盖磁滞
  • 批准号:
    1203792
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: A New Reconstruction of the Last West Antarctic Ice Sheet Deglaciation in the Ross Sea
合作研究:罗斯海最后一次西南极冰盖消融的新重建
  • 批准号:
    1043018
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Investigating Climate System Sensitivity to Ice Age Orbital Forcing
合作研究:调查气候系统对冰河时代轨道强迫的敏感性
  • 批准号:
    0902870
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Time-Continuous Climate Simulations of Abrupt Events and Transitions through the Cenozoic
合作研究:新生代突发事件和转变的时间连续气候模拟
  • 批准号:
    0513421
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Strain Accommodation by Fracturing During Folding of Sedimentary Rock
沉积岩褶皱过程中断裂引起的应变调节
  • 批准号:
    0125935
  • 财政年份:
    2002
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Workshop: New Departures in Structural Geology and Tectonics, September 2002, Denver
研讨会:构造地质学和构造学的新出发,2002 年 9 月,丹佛
  • 批准号:
    0233679
  • 财政年份:
    2002
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Precise Mathematical Modeling and Experimental Validation of Radiation Heat Transfer in Complex Porous Media Using Analytical Renewal Theory Abstraction-Regressions
职业:使用分析更新理论抽象回归对复杂多孔介质中的辐射传热进行精确的数学建模和实验验证
  • 批准号:
    2339032
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Community Impact with Teacher Leaders in Data Science and Mathematical Modeling
数据科学和数学建模领域教师领导者的社区影响
  • 批准号:
    2345194
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAREER: Mathematical Modeling from Data to Insights and Beyond
职业:从数据到见解及其他的数学建模
  • 批准号:
    2414705
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
RUI: Mathematical Modeling of Microglia
RUI:小胶质细胞的数学建模
  • 批准号:
    2245839
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Mathematical Foundation for Seismic Modeling Pioneered by Information Statistics
信息统计开创的地震模拟数学基础
  • 批准号:
    23H00466
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Mathematical Modeling of Drug Resistance Evolution and The Optimal Treatment Strategy in EGFR Mutated Lung Cancer
EGFR突变肺癌耐药演化的数学模型及最佳治疗策略
  • 批准号:
    22KJ0768
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Mathematical modeling and mathematical analysis of bacterial colony patterns
细菌菌落模式的数学建模和数学分析
  • 批准号:
    23K03225
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
LEAPS-MPS: Mathematical Modeling of Brain Structure in Neurodegenerative Diseases Exhibiting Prion-Like Spreading
LEAPS-MPS:表现出朊病毒样传播的神经退行性疾病中大脑结构的数学模型
  • 批准号:
    2316952
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Optimizing the sustainability of car sharing using mathematical modeling
使用数学模型优化汽车共享的可持续性
  • 批准号:
    EP/Y008014/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Mathematical Modeling and Scientific Computing for Infectious Disease Research
传染病研究的数学建模和科学计算
  • 批准号:
    10793008
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了