MRI: Development of an Optical Tweezers-based Time-Lapse 3D Imaging Cytorheometer

MRI:开发基于光镊的延时 3D 成像细胞流变仪

基本信息

  • 批准号:
    0421259
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-08-01 至 2007-07-31
  • 项目状态:
    已结题

项目摘要

The goal of this project is to develop a new instrument for simultaneous measurements of the structural and the mechanical properties of cytoskeletal protein network in living cells. A working prototype oscillating optical tweezer cytorheometer (OOTC) has already been developed from a work supported by a prior NSF-SGER grant. The present project will be implemented by integrating the existing OOTC with an Olympus spinning disk confocal microscope. The use of optical tweezers to measure mechanical properties of cells has been making significant processes recently. The proposed approach, Oscillating Optical Tweezer Cytorheometer (OOTC), takes advantage of the coherent detection of harmonically modulated particle motions by a lock-in amplifier to increase sensitivity, temporal resolution and simplicity. It has been demonstrated that OOTC can measure the dynamic mechanical modulus in the frequency range of 0.1- 6,000 Hz at a rate as fast as 100 data per second with 1 um3 spatial definition. More importantly, OOTC is capable of distinguishing the intrinsic non-random temporal variations from random fluctuations due to Brownian motion; this capability, not achievable by a conventional approach, is particular useful because living systems are highly dynamic and often exhibit non-thermal, rhythmic behavior. However, as capable as is OOTC, unless we can simultaneously measure the cytoskeletal structures in situ, the mechanical properties data would be as informative as that of "Blind men and the Elephant". Simultaneous and in situ measurements are critical because the polymeric protein network changes shape and reorganizes its structure in time scales from a fraction of a second to hours or days. Advanced optical fluorescent imaging techniques have made it possible to produce 3 dimensional images of the cytoskeletal structure and cytoplasmic components of living cells in great detail by confocal fluorescent microscopy. Integrating OOTC with a confocal microscope will provide eyes to OOTC so we not only feel but also see the cellular structures at the same time. The developed instrument will be used by both undergraduate and graduate students from the physics, biology departments and bioengineering program for education and research. Researchers on and off campus can also use the instrument for studying cell and tissue mechanics problems. The goal of this project is to develop a new instrument for simultaneous measurements of the structural and the mechanical properties of cytoskeletal protein network in living cells. A working prototype oscillating optical tweezer cytorheometer (OOTC) has already been developed from a work supported by a prior NSF-SGER grant. The present project will be implemented by integrating the existing OOTC with an Olympus spinning disk confocal microscope. Optical tweezers, formed by focused laser beam to hold and manipulate minute organelles in biological cells, have found effective use for measuring intracellular mechanical properties. Using an unique lock-in signal detection scheme, an approach similar to how a car radio pick up music sent by a distant radio station, the proposed approach provides unprecedented sensitivity, temporal resolution and simplicity for measuring the mechanical properties of the cell interior with minimal invasion to living cells. However, as capable as is OOTC, unless one can "see" the cytoskeletal structures in situ, the mechanical properties data would be as informative as that of "Blind men and the Elephant". Advanced fluorescent confocal imaging techniques have made it possible to produce 3 dimensional images of the cytoskeletal structure of living cells in great detail. Integrating OOTC with a confocal microscope will provide eyes to OOTC so we not only feel but also see the cellular structures at the same time. The developed instrument will be used by both undergraduate and graduate students from the physics, biology departments and bioengineering program for education and research. Researchers on and off campus can also use the instrument for studying cell and tissue mechanics problems.
该项目的目标是开发一种新的仪器,用于同时测量活细胞中细胞骨架蛋白质网络的结构和力学性质。振荡光学镊子细胞测速仪(OOTC)的工作原型已经从一项由NSF-SGER先前拨款支持的工作中开发出来。本项目将通过将现有的场外柜台与奥林巴斯旋转圆盘共聚焦显微镜相结合来实施。使用光学镊子来测量细胞的机械性能最近已经取得了重要的进展。提出的振荡式光镊子旋转仪(OOTC)利用锁定放大器对谐波调制粒子运动的相干检测来提高灵敏度、时间分辨率和简单性。结果表明,OOTC能以每秒100个数据的速度和1微米3的空间清晰度测量0.1-6000赫兹频率范围内的动态力学模数。更重要的是,OOTC能够区分内在的非随机时间变化和布朗运动引起的随机波动;这种能力是传统方法无法实现的,特别有用,因为生命系统是高度动态的,通常表现出非热的、有节奏的行为。然而,与OOTC一样有能力的人,除非我们能同时在现场测量细胞骨架结构,否则力学性能数据将像《盲人与大象》一样信息丰富。同时和原位测量是至关重要的,因为聚合蛋白网络在从几分之一秒到几小时或几天的时间尺度上改变形状和重组其结构。先进的光学荧光成像技术使得通过共聚焦荧光显微镜产生活细胞的细胞骨架结构和细胞质成分的详细三维图像成为可能。将OOTC与共焦显微镜相结合,将为OOTC提供眼睛,使我们不仅能感觉到细胞结构,还能同时看到细胞结构。开发的仪器将供物理系、生物系和生物工程专业的本科生和研究生用于教育和研究。校内外的研究人员也可以使用该仪器来研究细胞和组织力学问题。该项目的目标是开发一种新的仪器,用于同时测量活细胞中细胞骨架蛋白质网络的结构和力学性质。振荡光学镊子细胞测速仪(OOTC)的工作原型已经从一项由NSF-SGER先前拨款支持的工作中开发出来。本项目将通过将现有的场外柜台与奥林巴斯旋转圆盘共聚焦显微镜相结合来实施。光学镊子是由聚焦的激光形成的,用来固定和操纵生物细胞中的微小细胞器,已被有效地用于测量细胞内的机械特性。使用独特的锁定信号检测方案,类似于汽车无线电如何接收远处无线电台发送的音乐,所提出的方法提供了前所未有的灵敏度、时间分辨率和简单性,用于测量细胞内部的机械特性,同时对活细胞的影响最小。然而,与场外交易一样有能力的是,除非人们能在现场“看到”细胞骨架结构,否则机械性能数据将像“盲人和大象”的数据一样信息丰富。先进的荧光共聚焦成像技术使得能够产生非常详细的活细胞细胞骨架结构的三维图像。将OOTC与共焦显微镜相结合,将为OOTC提供眼睛,使我们不仅能感觉到细胞结构,还能同时看到细胞结构。开发的仪器将供物理系、生物系和生物工程专业的本科生和研究生用于教育和研究。校内外的研究人员也可以使用该仪器来研究细胞和组织力学问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hsin-Chiao Ou-Yang其他文献

Hsin-Chiao Ou-Yang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hsin-Chiao Ou-Yang', 18)}}的其他基金

IRES Track I: Advanced Imaging and Characterization at the Interface Between Living and Nonliving Materials
IRES 轨道 I:生物与非生物材料界面的高级成像和表征
  • 批准号:
    2153599
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
International Workshop on Stem Cell Differentiation: the Influence of Biomaterials and Biomechanics, Shanghai, China, March 13-15, 2013
干细胞分化国际研讨会:生物材料和生物力学的影响,中国上海,2013 年 3 月 13-15 日
  • 批准号:
    1258916
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
MRI: Development of Spectroscopic Imaging Optical Bottles for Analysis of Nanoparticles in Confinement
MRI:开发用于分析限制中纳米颗粒的光谱成像光学瓶
  • 批准号:
    0923299
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
SGER: Measurement of Colloidal Forces in Situ With Dual Optical Tweezers
SGER:使用双光镊原位测量胶体力
  • 批准号:
    9805887
  • 财政年份:
    1998
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似国自然基金

水稻边界发育缺陷突变体abnormal boundary development(abd)的基因克隆与功能分析
  • 批准号:
    32070202
  • 批准年份:
    2020
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:

相似海外基金

MRI: Track 1 Development of a Combined Optical and Magnetic Resonance Spectroscopy System
MRI:光学和磁共振组合光谱系统的轨道 1 开发
  • 批准号:
    2320520
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Equipment: MRI: Track II Development of an Optical Spectrometer for Multimodal Linearly Polarized, Circularly Polarized, and Integrating-Sphere-Assisted Spectroscopic Measurements
设备: MRI:用于多模态线偏振、圆偏振和积分球辅助光谱测量的光谱仪的 Track II 开发
  • 批准号:
    2320462
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
MRI: Development of an Optical Super-resolution Instrument for Measuring Concentration Profiles and Diffusion Dynamics in Thin Films
MRI:开发用于测量薄膜中的浓度分布和扩散动力学的光学超分辨率仪器
  • 批准号:
    2215742
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
MRI: Development of Rydberg Tweezer Quantum Processor with Real-Time Optical Cavity Readout
MRI:开发具有实时光腔读出功能的里德堡镊子量子处理器
  • 批准号:
    2216201
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
MRI: Development of Telescope Arrays to Image the Optical Counterparts of Mergers within Two Seconds of Gravitational-Wave Detection and Observe Supernovae at the Time of Explosion
MRI:开发望远镜阵列,在引力波探测的两秒内对合并的光学对应物进行成像,并观察爆炸时的超新星
  • 批准号:
    2117236
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
MRI: Development of a Machine Learning Multimodal Ultrafast Optical Microscope
MRI:机器学习多模态超快光学显微镜的开发
  • 批准号:
    2117616
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
MRI: Development of a 50-Tesla Ultrabroadband Magneto-optical Spectroscopy System
MRI:50特斯拉超宽带磁光光谱系统的开发
  • 批准号:
    2019004
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
MRI: Development of A Magneto-Optical Spectroscopy System for Investigation of Spintronic and Quantum Materials
MRI:开发用于研究自旋电子和量子材料的磁光光谱系统
  • 批准号:
    2019130
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
MRI: Development of an Energy Loss Optical Scintillation System (ELOSS), for Heavy-Ion Particle Identification (PID) to Advance Nuclear Physics Experiments
MRI:开发能量损失光学闪烁系统 (ELOSS),用于重离子粒子识别 (PID),以推进核物理实验
  • 批准号:
    2017986
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Development of concurrent MRI and Optical Spectroscopy for measurement of neuronal cell biophysical/microstructural changes
开发并行 MRI 和光谱学来测量神经元细胞生物物理/微观结构变化
  • 批准号:
    2107513
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了