MRI: Development of a Machine Learning Multimodal Ultrafast Optical Microscope

MRI:机器学习多模态超快光学显微镜的开发

基本信息

  • 批准号:
    2117616
  • 负责人:
  • 金额:
    $ 76.69万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-08-01 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

This award is jointly supported by the Major Research Instrumentation, the Chemical Measurement and Imaging, and the Chemistry Research Instrumentation programs. Purdue University is developing a machine learning multimodal ultrafast nonlinear optical microscope to support the research of Professor Libai Huang and colleagues Gregery Buzzard, Sujith Puthiyaveetil, Michael Reppert, and Chi Zhang. In general, this instrument development combines expertise in instrument design, non-linear ultrafast spectroscopy, microscopy, and machine learning. If successful, the resulting instrument will represent an enabling tool that could facilitate investigations involving complex materials and biological systems over a wide range of time (10 femtoseconds - microseconds) and length (50 nm - micron) scales, extending capabilities beyond what is currently available with conventional commercial microscopy instruments. This temporal/spatial information may be used to better understand energy and heat flow in complex materials and biological samples. This instrument will enhance education, research, and teaching efforts of students at all levels, in several departments, as well as be accessible for use at other institutions. The award to develop a machine learning multi-modal ultrafast optical imaging platform is aimed at enhancing research and education at all levels, especially in areas such as optical microscopy, machine learning, and ultrafast spectroscopy by reducing optical exposure and measurement time by about 100-fold without significant loss in reconstructed image quality. Studies focused on coherent and non-equilibrium energy transport in nanomaterials, multi-scale tracking of light response in photosynthetic membranes, and heat flow in biological assemblies are to be pursued as are those focused on machine learning-enabled adaptive sampling for ultrafast microscopy measurements. This instrument development project has the promise of opening up optical imaging studies of complex materials or biological systems at time and length scales beyond what is currently available with conventional commercial optical microscopy instrumentation.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项由主要研究仪器、化学测量和成像以及化学研究仪器计划共同支持。普渡大学正在开发一种机器学习多模超快非线性光学显微镜,以支持黄立白教授及其同事Gregery Buzzard、Sujith Puthiyaveetil、Michael Reppert和张驰的研究。总的来说,这种仪器的开发结合了仪器设计、非线性超快光谱、显微镜和机器学习方面的专业知识。如果成功,所产生的仪器将是一个有利的工具,可以促进涉及复杂材料和生物系统的大范围时间(10飞秒-微秒)和长度(50纳米-微米)的调查,将能力扩展到目前传统商业显微镜仪器所具有的能力之外。这种时间/空间信息可以用来更好地理解复杂材料和生物样品中的能量和热流。这一工具将加强各级学生在几个系的教育、研究和教学努力,并可在其他机构使用。开发机器学习多模式超快光学成像平台的奖项旨在加强所有级别的研究和教育,特别是在光学显微镜、机器学习和超快光谱等领域,通过将光学曝光和测量时间减少约100倍,而不会对重建图像质量造成重大损失。将继续进行纳米材料中相干和非平衡能量传输、光合膜中光响应的多尺度跟踪以及生物组件中的热流的研究,以及那些专注于超快显微镜测量的机器学习自适应采样的研究。这一仪器开发项目有望开启复杂材料或生物系统的光学成像研究,其时间和长度超过目前传统商业光学显微镜仪器的可用范围。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Libai Huang其他文献

Frozen non-equilibrium dynamics of exciton Mott insulators in moiré superlattices
莫尔超晶格中激子莫特绝缘体的冻结非平衡动力学
  • DOI:
    10.1038/s41563-025-02135-8
  • 发表时间:
    2025-03-03
  • 期刊:
  • 影响因子:
    38.500
  • 作者:
    Shibin Deng;Heonjoon Park;Jonas Reimann;Jonas M. Peterson;Daria D. Blach;Meng-Jia Sun;Tengfei Yan;Dewei Sun;Takashi Taniguchi;Kenji Watanabe;Xiaodong Xu;Dante M. Kennes;Libai Huang
  • 通讯作者:
    Libai Huang
Tunnelling electrons locally ignite excitons
  • DOI:
    10.1038/s41563-023-01514-3
  • 发表时间:
    2023-03
  • 期刊:
  • 影响因子:
    41.2
  • 作者:
    Libai Huang
  • 通讯作者:
    Libai Huang
Superradiant and subradiant states in lifetime-limited organic molecules through laser-induced tuning
通过激光诱导调谐研究寿命有限的有机分子的超辐射和亚辐射态
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    19.6
  • 作者:
    C. Lange;E. Daggett;V. Walther;Libai Huang;J. D. Hood
  • 通讯作者:
    J. D. Hood
Early-Career and Emerging Researchers in Physical Chemistry Volume 2.
物理化学领域的早期职业和新兴研究人员第 2 卷。
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    A. Alexandrova;J. Biteen;S. Coriani;F. Geiger;A. Gewirth;G. Goward;Hua Guo;Libai Huang;Jianfeng Li;T. Liedl;Stephan Link;Zhi;S. Maiti;A. Orr;David L Osborn;J. Pfaendtner;Benoı T Roux;Friederike Schmid;J. R. Schmidt;William F. Schneider;L. Slipchenko;G. Solomon;J. V. van Bokhoven;V. Van Speybroeck;Shen Ye;T. D. Crawford;M. Zanni;G. Hartland;J. Shea
  • 通讯作者:
    J. Shea
Celebrating Women in Physical Chemistry in China.
庆祝中国物理化学领域的女性。

Libai Huang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Libai Huang', 18)}}的其他基金

Collaborative Research: DMREF: Designing Coherence and Entanglement in Perovskite Quantum Dot Assemblies
合作研究:DMREF:设计钙钛矿量子点组件中的相干性和纠缠
  • 批准号:
    2324299
  • 财政年份:
    2023
  • 资助金额:
    $ 76.69万
  • 项目类别:
    Standard Grant
Ultrafast Imaging of Molecular Polariton Transport: Competition between Coherence and Localization
分子极化子传输的超快成像:相干性和定位之间的竞争
  • 批准号:
    2154388
  • 财政年份:
    2022
  • 资助金额:
    $ 76.69万
  • 项目类别:
    Standard Grant
Enhance Exciton Transport in Perovskite Quantum Dot Solids through Coherent Interactions
通过相干相互作用增强钙钛矿量子点固体中的激子传输
  • 批准号:
    2004339
  • 财政年份:
    2020
  • 资助金额:
    $ 76.69万
  • 项目类别:
    Standard Grant
CAREER: Ultrafast Nanoscopy of Energy Transport in Molecular Assemblies
职业:分子组装中能量传输的超快纳米显微镜
  • 批准号:
    1555005
  • 财政年份:
    2016
  • 资助金额:
    $ 76.69万
  • 项目类别:
    Continuing Grant
Femtosecond Microscopy of Charge Transport in Perovskite Thin Films
钙钛矿薄膜中电荷传输的飞秒显微镜
  • 批准号:
    1507803
  • 财政年份:
    2015
  • 资助金额:
    $ 76.69万
  • 项目类别:
    Standard Grant

相似国自然基金

水稻边界发育缺陷突变体abnormal boundary development(abd)的基因克隆与功能分析
  • 批准号:
    32070202
  • 批准年份:
    2020
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:

相似海外基金

MRI: Development of Heterogeneous Edge Computing Platform for Real-Time Scientific Machine Learning
MRI:开发用于实时科学机器学习的异构边缘计算平台
  • 批准号:
    2215789
  • 财政年份:
    2022
  • 资助金额:
    $ 76.69万
  • 项目类别:
    Standard Grant
Development of cardiac biventricular assessment with MRI and machine learning
利用 MRI 和机器学习开发心脏双心室评估
  • 批准号:
    563197-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 76.69万
  • 项目类别:
    University Undergraduate Student Research Awards
MRI: Development of a fully automated, 1,000-MicroChemostat microfluidic system for parallel, independent, long-duration, machine-guided experiments
MRI:开发全自动、1,000-MicroChemostat 微流体系统,用于并行、独立、长时间、机器引导实验
  • 批准号:
    2117782
  • 财政年份:
    2021
  • 资助金额:
    $ 76.69万
  • 项目类别:
    Standard Grant
MRI: Development of a Sensors and Machine Learning Instrument Suite for Solar Array Monitoring
MRI:开发用于太阳能阵列监测的传感器和机器学习仪器套件
  • 批准号:
    2019068
  • 财政年份:
    2020
  • 资助金额:
    $ 76.69万
  • 项目类别:
    Standard Grant
Mapping human brain development at new spatial resolutions using machine learning and 7T MRI
使用机器学习和 7T MRI 以新的空间分辨率绘制人类大脑发育图
  • 批准号:
    2281627
  • 财政年份:
    2019
  • 资助金额:
    $ 76.69万
  • 项目类别:
    Studentship
MRI: Development of a Non-Equilibrium Plasma Coupled Rapid Compression Machine
MRI:非平衡等离子体耦合快速压缩机的开发
  • 批准号:
    1919952
  • 财政年份:
    2019
  • 资助金额:
    $ 76.69万
  • 项目类别:
    Standard Grant
MRI: Development of an Instrument for a Comprehensive Study of Alzheimer's Disease: Multimodal Imaging, Visualization, Machine Learning and Therapeutic Brain Stimulation
MRI:开发用于综合研究阿尔茨海默病的仪器:多模态成像、可视化、机器学习和治疗性脑刺激
  • 批准号:
    1920182
  • 财政年份:
    2019
  • 资助金额:
    $ 76.69万
  • 项目类别:
    Continuing Grant
Characterising abnormal early brain development and links to neuropsychiatric disorders using diffusion MRI and machine learning
使用扩散 MRI 和机器学习表征早期大脑发育异常及其与神经精神疾病的联系
  • 批准号:
    2290189
  • 财政年份:
    2019
  • 资助金额:
    $ 76.69万
  • 项目类别:
    Studentship
Mapping human brain development at new spatial resolutions using machine learning and 7T MRI
使用机器学习和 7T MRI 以新的空间分辨率绘制人类大脑发育图
  • 批准号:
    2198232
  • 财政年份:
    2018
  • 资助金额:
    $ 76.69万
  • 项目类别:
    Studentship
Development of a free-breathing dynamic contrast-enhanced (DCE)-MRI technique for the abdomen using a machine learning approach
使用机器学习方法开发腹部自由呼吸动态对比增强 (DCE)-MRI 技术
  • 批准号:
    18K18364
  • 财政年份:
    2018
  • 资助金额:
    $ 76.69万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了