Career: Differential Equations: Building a Theory of Student Reasoning and Understanding

职业:微分方程:建立学生推理和理解的理论

基本信息

  • 批准号:
    0423067
  • 负责人:
  • 金额:
    $ 38.07万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-01-01 至 2006-06-30
  • 项目状态:
    已结题

项目摘要

Advances in technology and the calculus reform movement have resulted in several recent curricular reform efforts in differential equations. These reform efforts have decreased the traditional emphasis on analytic techniques for finding exact solutions to well-posed problems and increased the use of computing technology to incorporate qualitative and numerical methods for understanding the behavior of solutions to differential equations. Research on student learning of differential equations, however, has lagged behind these curricula efforts.This project will enlarge our understanding of how emerging analyses of student thinking, technology, context problems, and symbol use can be profitably coordinated to promote student learning of advanced, undergraduate mathematics, using differential equations as a specific case. The proposed research project will illustrate how theory-driven work at the elementary and secondary level can inform, guide, and sustain the learning and teaching of university mathematics in technology-rich classrooms. Long-range research plans include analyses that focus on effective means by which university mathematics instructors proactively support students' mathematical development in technology-rich classrooms.In broad terms, the research methodology employed in this project falls under the heading of "developmental research" and highlights the relationship between research and practice, centering on the learning-teaching process with particular attention to the mental activities of students. Three, semester-long classroom teaching experiments and individual student interviews will be conducted over a period of five years. Data sources will include videorecordings of all classroom sessions, videorecordings of student interviews, copies of student work, and records of project meetings. Data analysis will follow the constant comparative method adapted for longitudinal classroom videorecordings and multiple data sources.
技术的进步和微积分改革运动导致了最近几次微分方程课程改革的努力。 这些改革的努力减少了传统的重点分析技术,找到确切的解决方案,适定的问题,并增加了使用计算技术,将定性和数值方法,了解行为的解决方案,微分方程。 然而,对学生学习微分方程的研究已经落后于这些课程的努力。本项目将扩大我们的理解,如何新兴的分析学生的思维,技术,上下文问题,和符号的使用可以有利地协调,以促进学生学习高等,本科数学,使用微分方程作为一个具体的情况。 拟议的研究项目将说明如何在小学和中学一级的理论驱动的工作可以通知,指导和维持在技术丰富的课堂大学数学的学习和教学。长期研究计划包括分析大学数学教师如何在技术丰富的课堂上积极支持学生数学发展的有效方法。概括而言,本项目采用的研究方法福尔斯“发展性研究”的范畴,并强调研究与实践之间的关系,以学-教过程为中心,特别关注学生的心理活动。 三、为期五年,进行一学期的课堂教学实验和个别学生访谈。 数据来源将包括所有课堂会议的录像,学生访谈的录像,学生工作的副本,以及项目会议的记录。 数据分析将遵循适用于纵向课堂录像和多种数据来源的持续比较方法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Chris Rasmussen其他文献

The Sierpinski smoothie: blending area and perimeter
  • DOI:
    10.1007/s10649-019-09889-4
  • 发表时间:
    2019-03-13
  • 期刊:
  • 影响因子:
    1.900
  • 作者:
    Naneh Apkarian;Michal Tabach;Tommy Dreyfus;Chris Rasmussen
  • 通讯作者:
    Chris Rasmussen
Computing in Bioinformatics and Engaged Student Learning: Student Perspectives on Anticipatory Activities and Innovative Apps
生物信息学计算和学生参与学习:学生对预期活动和创新应用程序的看法
  • DOI:
    10.1080/0047231x.2022.12290692
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tina A. Marcroft;Chris Rasmussen;Scott T. Kelley
  • 通讯作者:
    Scott T. Kelley
Effects of high carbohydrate or high protein energy-restricted diets combined with resistance-exercise on weight loss and markers of health in women with serum triglyceride levels above or below median values
  • DOI:
    10.1186/1550-2783-7-s1-p9
  • 发表时间:
    2010-09-15
  • 期刊:
  • 影响因子:
    3.900
  • 作者:
    Jonathan M Oliver;Julie Y Kresta;Mike Byrd;Claire Canon;Michelle Mardock;Sunday Simbo;Peter Jung;Brittanie Lockard;Deepesh Khanna;Majid Koozehchian;Chris Rasmussen;Chad Kerksick;Richard Kreider
  • 通讯作者:
    Richard Kreider
Defining as a mathematical activity: A framework for characterizing progress from informal to more formal ways of reasoning
  • DOI:
    10.1016/j.jmathb.2010.01.001
  • 发表时间:
    2010-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    Michelle Zandieh;Chris Rasmussen
  • 通讯作者:
    Chris Rasmussen
Comparative effectiveness of two popular weight loss programs in women III: health and fitness markers
  • DOI:
    10.1186/1550-2783-8-s1-p5
  • 发表时间:
    2011-11-07
  • 期刊:
  • 影响因子:
    3.900
  • 作者:
    Jonathan Oliver;Michelle Mardock;Brittanie Lockard;Mike Byrd;Sunday Simbo;Andrew Jagim;Julie Kresta;Claire Baetge;Peter Jung;Majid Koozehchian;Deepesch Khanna;Mike Greenwood;Chris Rasmussen;Richard Kreider
  • 通讯作者:
    Richard Kreider

Chris Rasmussen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Chris Rasmussen', 18)}}的其他基金

Making Upper Division Mathematics Courses More Relevant for Future High School Teachers: The Case of Inquiry-Oriented Dynamical Systems and Modeling
使高年级数学课程与未来高中教师更相关:以探究为导向的动力系统和建模案例
  • 批准号:
    2337047
  • 财政年份:
    2024
  • 资助金额:
    $ 38.07万
  • 项目类别:
    Standard Grant
Collaborative Research: Student Engagement in Mathematics through an Institutional Network for Active Learning
协作研究:学生通过主动学习的机构网络参与数学
  • 批准号:
    1624639
  • 财政年份:
    2016
  • 资助金额:
    $ 38.07万
  • 项目类别:
    Standard Grant
Exploring the Role of Instructors' Social Networks in Undergraduate STEM Instructional Improvement
探索教师社交网络在本科生 STEM 教学改进中的作用
  • 批准号:
    1550990
  • 财政年份:
    2015
  • 资助金额:
    $ 38.07万
  • 项目类别:
    Standard Grant
Collaborative Research: Developing inquiry oriented instructional materials for Linear Algebra
合作研究:开发面向探究的线性代数教学材料
  • 批准号:
    1245796
  • 财政年份:
    2013
  • 资助金额:
    $ 38.07万
  • 项目类别:
    Standard Grant
Collaborative Research: A Conference to Promote the Integration of Research on Undergraduate Mathematics, Physics, and Chemistry Education
协作研究:促进本科数理化教育研究融合会议
  • 批准号:
    0941191
  • 财政年份:
    2010
  • 资助金额:
    $ 38.07万
  • 项目类别:
    Standard Grant
Collaborative Research: Exploring Student Understanding of Physical Chemistry
合作研究:探索学生对物理化学的理解
  • 批准号:
    0816948
  • 财政年份:
    2008
  • 资助金额:
    $ 38.07万
  • 项目类别:
    Standard Grant
Collaborative Research: Investigating Issues of the Individual and the Collective along a Continuum between Informal and Formal Reasoning
协作研究:沿着非正式和正式推理的连续体调查个人和集体的问题
  • 批准号:
    0634074
  • 财政年份:
    2007
  • 资助金额:
    $ 38.07万
  • 项目类别:
    Continuing Grant
Career: Differential Equations: Building a Theory of Student Reasoning and Understanding
职业:微分方程:建立学生推理和理解的理论
  • 批准号:
    9875388
  • 财政年份:
    1999
  • 资助金额:
    $ 38.07万
  • 项目类别:
    Continuing Grant

相似海外基金

CAREER: Elliptic and Parabolic Partial Differential Equations
职业:椭圆和抛物型偏微分方程
  • 批准号:
    2236491
  • 财政年份:
    2023
  • 资助金额:
    $ 38.07万
  • 项目类别:
    Continuing Grant
CAREER: Pattern formation in singularly perturbed partial differential equations
职业:奇异摄动偏微分方程中的模式形成
  • 批准号:
    2238127
  • 财政年份:
    2023
  • 资助金额:
    $ 38.07万
  • 项目类别:
    Continuing Grant
CAREER: Nonlocal partial differential equations in collective dynamics and fluid flow
职业:集体动力学和流体流动中的非局部偏微分方程
  • 批准号:
    2238219
  • 财政年份:
    2023
  • 资助金额:
    $ 38.07万
  • 项目类别:
    Continuing Grant
CAREER: Regularity Theory of Measures and Dispersive Partial Differential Equations
职业:测度正则性理论和色散偏微分方程
  • 批准号:
    2142064
  • 财政年份:
    2022
  • 资助金额:
    $ 38.07万
  • 项目类别:
    Continuing Grant
CAREER: Randomized Multiscale Methods for Heterogeneous Nonlinear Partial Differential Equations
职业:异质非线性偏微分方程的随机多尺度方法
  • 批准号:
    2145364
  • 财政年份:
    2022
  • 资助金额:
    $ 38.07万
  • 项目类别:
    Continuing Grant
CAREER: Curvature, Topology, and Geometric Partial Differential Equations, with new tools from Applied Mathematics
职业:曲率、拓扑和几何偏微分方程,以及应用数学的新工具
  • 批准号:
    2142575
  • 财政年份:
    2022
  • 资助金额:
    $ 38.07万
  • 项目类别:
    Continuing Grant
CAREER: Integro-differential and Transport Problems in Partial Differential Equations
职业:偏微分方程中的积分微分和输运问题
  • 批准号:
    2144232
  • 财政年份:
    2022
  • 资助金额:
    $ 38.07万
  • 项目类别:
    Continuing Grant
CAREER: Constrained Optimal Control of Partial Differential Equations for Improving Energy Utilization in Transportation and in the Built Environment
职业:偏微分方程的约束最优控制,以提高交通和建筑环境中的能源利用率
  • 批准号:
    2042354
  • 财政年份:
    2021
  • 资助金额:
    $ 38.07万
  • 项目类别:
    Standard Grant
CAREER: Fractional Partial Differential Equations, Harmonic Analysis, and Their Applications in the Geometric Calculus of Variations and Quantitative Topology
职业:分数阶偏微分方程、调和分析及其在变分几何微积分和定量拓扑中的应用
  • 批准号:
    2044898
  • 财政年份:
    2021
  • 资助金额:
    $ 38.07万
  • 项目类别:
    Continuing Grant
CAREER: Mean Field Games with Economics Applications: New Techniques in Partial Differential Equations
职业:平均场博弈与经济学应用:偏微分方程新技术
  • 批准号:
    2045027
  • 财政年份:
    2021
  • 资助金额:
    $ 38.07万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了