CAREER: Regularity Theory of Measures and Dispersive Partial Differential Equations

职业:测度正则性理论和色散偏微分方程

基本信息

  • 批准号:
    2142064
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-07-01 至 2027-06-30
  • 项目状态:
    未结题

项目摘要

This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2). This project seeks to advance and promote the study of mathematical analysis fundamental to the understanding of the physical world. Specifically, the portions of this project related to evolution equations will provide a greater understanding of essential mathematical models of the behavior of Bose gases, nonlinear optical systems, and geophysical fluids. The portion of the project related to geometric measure theory will enhance the mathematical community's understanding of the tools and methods used to analyze mathematical models of the type described above. Simultaneously, the project is designed to take a focused approach towards the development of future analysts by running a summer directed reading program for undergraduate students of color. The project's activities include collaboration with not only researchers in pure mathematics, but a continuation of the PI's work with those in engineering and applied mathematics. The cross-collaboration will further bolster the strength of the mathematical sciences at the same time that it affords early-career researchers the ability to develop a wide variety of ways in which to pursue the mathematical sciences.The aim of this project is to further our knowledge of the foundational aspects of geometric measure theory, as well as study classes of partial differential equations very important to, among other things, the modeling of interacting particles and fluids. These avenues of research will maintain crucial relevance to the field of analysis for years to come and, for this reason, the project includes educational activities that will introduce students of color to these research pathways. The work of the project follows two research tracks: the first track consists of the study of classical dispersive equations such as the nonlinear Schrodinger equation and Fermi-Pasta-Tsingou-Ulam spring-mass molecular system. A significant component of this track is the study of semilinear dispersive evolution equations whose dispersion relations are parametrized by a specific physical aspect of the system. The second track consists of the study of geometric measure theory and, in particular, the structure theory of Besicovitch, Marstrand and Preiss in Banach Spaces as well as differentiability properties of functions. The goal of the project is to determine the existence of solutions to the evolution equations described above and characterize the behavior of such solutions as well as characterize the structure of sets and measures that naturally occur in the study of mathematical analysis.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项全部或部分根据2021年美国救援计划法案(公法117-2)资助。该项目旨在推进和促进数学分析的研究,这是理解物理世界的基础。具体来说,本项目与演化方程相关的部分将提供对玻色气体,非线性光学系统和地球物理流体行为的基本数学模型的更好理解。与几何测量理论相关的项目部分将提高数学界对用于分析上述类型的数学模型的工具和方法的理解。同时,该项目的目的是采取一个集中的方法对未来的分析师的发展,通过运行夏季定向阅读程序的本科学生的颜色。该项目的活动不仅包括与纯数学研究人员的合作,还包括继续PI与工程和应用数学研究人员的合作。交叉合作将进一步加强数学科学的实力,同时,它为早期职业研究人员提供了发展各种各样的方法来追求数学科学的能力。该项目的目的是进一步加深我们对几何测度理论基础方面的了解,以及研究偏微分方程的课程,这些课程对以下方面非常重要:粒子和流体相互作用的模型。这些研究途径将在未来几年内与分析领域保持至关重要的相关性,因此,该项目包括将向有色人种学生介绍这些研究途径的教育活动。该项目的工作遵循两条研究轨道:第一条轨道包括对经典色散方程的研究,如非线性薛定谔方程和Fermi-Pasta-Tsingou-Ulam弹簧-质量分子系统。这条轨道的一个重要组成部分是研究半线性色散演化方程,其色散关系由系统的特定物理方面参数化。第二轨道包括几何测量理论的研究,特别是结构理论的贝西科维奇,Marstrand和Preiss在Banach空间以及微分性质的职能。该项目的目标是确定上述演化方程的解的存在性,并表征这些解的行为,以及表征在数学分析研究中自然发生的集合和度量的结构。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bobby Wilson其他文献

Modified Scattering of Cubic Nonlinear Schr\"odinger Equation on Rescaled Waveguide Manifolds
重定标波导流形上三次非线性薛定谔方程的修正散射
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bobby Wilson;Xueying Yu
  • 通讯作者:
    Xueying Yu
Energy transfer for solutions to the nonlinear Schr"odinger equation on irrational tori
无理环上非线性薛定格方程解的能量传递
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alexander Hrabski;Yulin Pan;G. Staffilani;Bobby Wilson
  • 通讯作者:
    Bobby Wilson
Distance sets bounds for polyhedral norms via effective dimension
距离通过有效尺寸设置多面体范数的界限
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Iqra Altaf;Ryan E. G. Bushling;Bobby Wilson
  • 通讯作者:
    Bobby Wilson
Self-similar sets and Lipschitz graphs
自相似集和 Lipschitz 图
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Blair Davey;Silvia Ghinassi;Bobby Wilson
  • 通讯作者:
    Bobby Wilson
Density Properties of Sets in Finite-Dimensional, Strictly Convex Banach Spaces
有限维、严格凸 Banach 空间中集合的密度性质
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bobby Wilson
  • 通讯作者:
    Bobby Wilson

Bobby Wilson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bobby Wilson', 18)}}的其他基金

Conference: Geometry of Measures and Free Boundaries
会议:测量几何和自由边界
  • 批准号:
    2403698
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Harmonic Analysis, Structure Theory of Measures, and Properties of Hamiltonian Dynamical Systems
调和分析、结构测度理论以及哈密顿动力系统的性质
  • 批准号:
    1856124
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Houston - Louis Stokes STEM Pathways and Research Alliance
休斯顿 - 路易斯斯托克斯 STEM 途径和研究联盟
  • 批准号:
    1911310
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Houston-Louis Stokes Alliance for Minority Participation:Senior Alliance
休斯顿-路易斯斯托克斯少数族裔参与联盟:高级联盟
  • 批准号:
    1407736
  • 财政年份:
    2014
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Minority Undergraduate/Graduate Student Technical Presentation-Experience at the 2014 National Organization for the Professional Advancement of Black Chemists & Chemical Engine
少数族裔本科生/研究生技术演讲 - 2014 年全国黑人化学家职业发展组织的经历
  • 批准号:
    1449993
  • 财政年份:
    2014
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Minority Undergraduate/Graduate Student Technical Presentation Experience at the 2013 NOBCChE Annual Technical Conference
2013年NOBCChE年度技术会议少数族裔本科生/研究生技术演讲经历
  • 批准号:
    1355313
  • 财政年份:
    2013
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Science and Technology Enhancement Program (STEP)
科学技术增强计划(STEP)
  • 批准号:
    0624866
  • 财政年份:
    2006
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Chemical and Biological Assessment of Endocrine Disruptors in Waterways of Southeast Texas
德克萨斯州东南部水道内分泌干扰物的化学和生物评估
  • 批准号:
    0401587
  • 财政年份:
    2004
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Investigation of Coal, Coal Derived Prod. and Coal Catalysts
煤炭、煤炭衍生产品调查
  • 批准号:
    8704062
  • 财政年份:
    1987
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
The Synthesis and Characterization of Some Poly(Pyrazol-1- Yl)borate Complexes of Zirconium (Iv) and of Niobium (Iv)
锆(Iv)和铌(Iv)的一些聚(吡唑-1-基)硼酸盐配合物的合成和表征
  • 批准号:
    7704572
  • 财政年份:
    1977
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似海外基金

Problems in Regularity Theory of Partial Differential Equations
偏微分方程正则论中的问题
  • 批准号:
    2350129
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
On Regularity Methods and Applications in Graph Theory
论图论中的正则方法及其应用
  • 批准号:
    2404167
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Model theoretic classification theory, Fourier analysis, and hypergraph regularity
职业:模型理论分类理论、傅立叶分析和超图正则性
  • 批准号:
    2239737
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Regularity Properties and K-Theory of Crossed Product Operator Algebras
叉积算子代数的正则性质与K理论
  • 批准号:
    2055736
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
On Regularity Methods and Applications in Graph Theory
论图论中的正则方法及其应用
  • 批准号:
    1953958
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Regularity theory for viscosity solutions of fully nonlinear equations and its applications
全非线性方程粘度解的正则理论及其应用
  • 批准号:
    20H01817
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Regularity Theory for Degenerate Quasilinear Wave Equations and its Applications
简并拟线性波动方程的正则理论及其应用
  • 批准号:
    19K14573
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Regularity theory for elliptic and parabolic free boundary problems
椭圆和抛物线自由边界问题的正则理论
  • 批准号:
    417627993
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
    Research Grants
AF: Small: Symmetry and regularity in the theory of computing
AF:小:计算理论中的对称性和规律性
  • 批准号:
    1718902
  • 财政年份:
    2017
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Applications and Theory of the Algorithmic Hypergraph Regularity Method
算法超图正则方法的应用与理论
  • 批准号:
    1700280
  • 财政年份:
    2017
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了