Collaborative Research: CCF-TF: Computing Geometric Structures of 3-Manifolds
合作研究:CCF-TF:计算3流形的几何结构
基本信息
- 批准号:0830550
- 负责人:
- 金额:$ 24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-07-01 至 2012-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
0830550Gu, XianfengWith the solution of Poincar´e's conjecture and Thurston's geometrization conjecture, it has been proven in theory that all closed 3-manifolds can be decomposed to pieces which admit one of eight canonical geometries. Geometric structures of 3-manifolds play fundamental roles in geometry and topology. The proposal focuses on inventing practical algorithms to compute geometric structures of 3-manifolds. The geometric algorithms combine both numerical and symbolic methods to compute the canonical Riemannian metrics on discrete 3-manifolds. These algorithms will lay down the foundations to tackle many important and long lasting open problems in engineering fields.All shapes in real life are volumetric. The computational algorithms on shapes are based on geometric structures of 3-manifolds, either explicitly or implicitly. It is important to understand various geometric structures on 3-manifolds and to design rigorous computational framework to approximate them. The proposal focuses on computing canonical Riemannian metrics on 3-manifold using triangulations, angle structures and the volume functional. In discrete setting, Riemannian metrics are represented as edge lengths, the curvatures are represented as dihedral angles. The symmetry of volumes of tetrahedra induces special volumetric energy form. The critical points of the volume energies correspond to the desired canonical metrics. For hyperbolic 3-manifolds, the volume energy is convex. The global minimal point is unique and reachable using Newton's method. In general 3-manifolds, the volumetric energy is more complicted, there may exist topological obstructions. The proposal studies the formation of the obstructions, and designs different strategies to modify the triangulation to remove the obstruction and reach the canonical metric solutions. The geometric structure of 3-manifolds can be directly applied in comuter graphics, computer vision, geometric modeling and medical imaging and many other fields. The practical computational tool will be helpful for mathematicians and physists in studying low dimensional topology. The visualization tools will be valuable for teaching and propogating the knowledge.
0830550顾先锋随着Poincar ′ e猜想和Thurston几何化猜想的解决,从理论上证明了所有闭三维流形都可以分解为八个标准几何中的一个.三维流形的几何结构在几何学和拓扑学中起着重要的作用。该提案的重点是发明实用算法来计算三维流形的几何结构。几何算法联合收割机结合数值和符号方法计算离散三维流形上的正则黎曼度量。这些算法将为解决工程领域中许多重要而持久的开放问题奠定基础。形状的计算算法是基于三维流形的几何结构,无论是显式或隐式。理解三维流形上的各种几何结构并设计严格的计算框架来近似它们是很重要的。该建议的重点是使用三角剖分,角结构和体积泛函计算3-流形上的典型黎曼度量。在离散情况下,黎曼度量表示为边长,曲率表示为二面角。四面体体积的对称性导致了特殊的体积能量形式。体积能量的临界点对应于所需的正则度量。对于双曲三维流形,体积能量是凸的。全局极小点是唯一的,并可达到使用牛顿法。在一般的三维流形中,体积能量比较复杂,可能存在拓扑障碍。该方案研究了障碍物的形成,并设计了不同的策略来修改三角剖分,以消除障碍物,并达到规范的度量解决方案。 三维流形的几何结构可以直接应用于计算机图形学、计算机视觉、几何建模和医学成像等诸多领域。这一实用的计算工具将有助于数学家和物理学家研究低维拓扑。这些可视化工具对知识的教学和传播具有重要的价值。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xianfeng Gu其他文献
A novel computer aided detection (CADe) scheme for colonic polyps based on colon structure decomposition
基于结肠结构分解的新型结肠息肉计算机辅助检测(CADe)方案
- DOI:
10.1109/nssmic.2013.6829287 - 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Huafeng Wang;Zhengrong Liang;Lihong C. Li;Hao Peng;Bowen Song;Hao Han;Yan Liu;Fangfang Han;Xianfeng Gu - 通讯作者:
Xianfeng Gu
GRIP: Greedy Routing through dIstributed Parametrization for guaranteed delivery in WSNs
- DOI:
10.1007/s11276-014-0770-6 - 发表时间:
2014-07-09 - 期刊:
- 影响因子:2.100
- 作者:
Minqi Zhang;Feng Li;Ying He;Juncong Lin;Xianfeng Gu;Jun Luo - 通讯作者:
Jun Luo
Erratum to: Optimization of Surface Registrations Using Beltrami Holomorphic Flow
- DOI:
10.1007/s10915-011-9541-z - 发表时间:
2011-09-16 - 期刊:
- 影响因子:3.300
- 作者:
Lok Ming Lui;Tsz Wai Wong;Wei Zeng;Xianfeng Gu;Paul M. Thompson;Tony F. Chan;Shing-Tung Yau - 通讯作者:
Shing-Tung Yau
Free-Radical-Promoted Copper-Catalyzed Intermolecular Cyanosulfonylation and Cyanotrifluoromethylation of Unactivated Alkenes in Water-Containing Solvents
自由基促进的铜催化含水溶剂中未活化烯烃的分子间氰磺酰化和氰基三氟甲基化
- DOI:
10.1021/acs.joc.8b02073 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Yan Zhu;Jinlong Tian;Xianfeng Gu;Yonghui Wang - 通讯作者:
Yonghui Wang
Computational generation and conformal fabrication of woven fabric structures by harmonic foliation
通过和谐叶理计算生成和机织物结构的保形制造
- DOI:
10.1016/j.cma.2020.112874 - 发表时间:
2020-05 - 期刊:
- 影响因子:7.2
- 作者:
Yang Guo;Qian Ye;Xiaopeng Zheng;Shikui Chen;Na Lei;Yuanqi Zhang;Xianfeng Gu - 通讯作者:
Xianfeng Gu
Xianfeng Gu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xianfeng Gu', 18)}}的其他基金
I-Corps: Developing A 3D Total Body Imaging and Analysis System for Early Detection of Skin Cancer
I-Corps:开发用于早期检测皮肤癌的 3D 全身成像和分析系统
- 批准号:
2115095 - 财政年份:2021
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Collaborative Research: Geometric Analysis of Computer and Social Networks
合作研究:计算机和社交网络的几何分析
- 批准号:
1418255 - 财政年份:2014
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Algorithmic Aspects of Geometry for Using LIDAR and Wireless Sensor Networks for Combating Chemical Terror Attacks
合作研究:ATD:使用激光雷达和无线传感器网络对抗化学恐怖袭击的几何算法
- 批准号:
1221339 - 财政年份:2012
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
IIS: III: Small: Conformal Geometry for Computer Vision
IIS:III:小:计算机视觉的共形几何
- 批准号:
0916286 - 财政年份:2009
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
SGER: Discrete Volumetric Curvature Flow for Graphics Applications
SGER:图形应用的离散体积曲率流
- 批准号:
0841514 - 财政年份:2008
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
III-CXT: Collaborative Research: Integrated Modeling and Learning of Multimodality Data across Subjects for Brain Disorder Study
III-CXT:协作研究:针对脑部疾病研究的跨学科多模态数据的集成建模和学习
- 批准号:
0713145 - 财政年份:2007
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
MSPA-MCS: Discrete Curvature Flows on Graphics and Visualization
MSPA-MCS:图形和可视化上的离散曲率流
- 批准号:
0626223 - 财政年份:2006
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
MSPA-MCS: Collaborative Research: Computer Graphics and Visualization Using Conformal Geometry
MSPA-MCS:协作研究:使用共形几何的计算机图形和可视化
- 批准号:
0528363 - 财政年份:2005
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
CAREER: Conformal Geometry Applied to Shape Analysis and Geometric Modeling
职业:共形几何应用于形状分析和几何建模
- 批准号:
0448399 - 财政年份:2005
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: CCF Core: Small: User-transparent Data Management for Persistence and Crash-consistency in Non-volatile Memories
协作研究:CCF 核心:小型:用户透明的数据管理,以实现非易失性存储器中的持久性和崩溃一致性
- 批准号:
2313146 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Collaborative Research: CCF Core: Small: User-transparent Data Management for Persistence and Crash-consistency in Non-volatile Memories
协作研究:CCF 核心:小型:用户透明的数据管理,以实现非易失性存储器中的持久性和崩溃一致性
- 批准号:
2415473 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Collaborative Research: CCF Core: Small: User-transparent Data Management for Persistence and Crash-consistency in Non-volatile Memories
协作研究:CCF 核心:小型:用户透明的数据管理,以实现非易失性存储器中的持久性和崩溃一致性
- 批准号:
2313147 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Collaborative Research: CCF: AF: Medium: Validated Soft Approaches to Parametric ODE Solving
协作研究:CCF:AF:中:经过验证的参数 ODE 求解软方法
- 批准号:
2212461 - 财政年份:2022
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
Collaborative Research: CCF: AF: Medium: Validated Soft Approaches to Parametric ODE Solving
协作研究:CCF:AF:中:经过验证的参数 ODE 求解软方法
- 批准号:
2212460 - 财政年份:2022
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
Collaborative Research: CCF: AF: Medium: Validated Soft Approaches to Parametric ODE Solving
协作研究:CCF:AF:中:经过验证的参数 ODE 求解软方法
- 批准号:
2212462 - 财政年份:2022
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
Collaborative Research: CISE-MSI: DP: CCF: SHF: MSI/HSI Research Capacity Building via Secure and Efficient Hardware Implementation of Cellular Computational Networks
合作研究:CISE-MSI:DP:CCF:SHF:通过安全高效的蜂窝计算网络硬件实现进行 MSI/HSI 研究能力建设
- 批准号:
2131070 - 财政年份:2021
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Collaborative Research: CISE-MSI: DP: CCF: SHF: MSI/HSI Research Capacity Building via Secure and Efficient Hardware Implementation of Cellular Computational Networks
合作研究:CISE-MSI:DP:CCF:SHF:通过安全高效的蜂窝计算网络硬件实现进行 MSI/HSI 研究能力建设
- 批准号:
2131163 - 财政年份:2021
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
NSF-BSF: SHF: CCF: Small: Collaborative Research: Hardware/Software Design of Durable Data Structures and Algorithms for Non-Volatile Main Memory
NSF-BSF:SHF:CCF:小型:协作研究:非易失性主存储器的持久数据结构和算法的硬件/软件设计
- 批准号:
1909715 - 财政年份:2019
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
NSF-BSF: SHF: CCF: Small: Collaborative Research: Hardware/Software Design of Durable Data Structures and Algorithms for Non-Volatile Main Memory
NSF-BSF:SHF:CCF:小型:协作研究:非易失性主存储器的持久数据结构和算法的硬件/软件设计
- 批准号:
1908806 - 财政年份:2019
- 资助金额:
$ 24万 - 项目类别:
Standard Grant