SGER: Discrete Volumetric Curvature Flow for Graphics Applications
SGER:图形应用的离散体积曲率流
基本信息
- 批准号:0841514
- 负责人:
- 金额:$ 7.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-08-01 至 2009-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
SGER: Discrete Volumetric Curvature Flow for Engineering ApplicationsGiven a surface in the three dimensional Euclidean space, the surface can be deformed to one of the three canonical shapes, the unit sphere, the plane and the hyperbolic disk. Furthermore, the deformation is angle preserving. The Poincare's conjecture and Thurton's geometrization conjecture generalize the fact to three dimensional manifolds. Basically, a three manifold can be decomposed to pieces in a canonical way, with each piece admitting one of eight geometries. The canonical Riemannian metric plays important roles in many engineering applications, such as hexahedral meshing, volumetric parameterization and volumetric spline construction. The proof of Poincare's conjecture offers a powerful tool to compute such metrics, Ricci flow. The Ricci flow is the process to deform the Riemannian metric proportional to the curvature, such that the curvature evolves according to heat diffusion. Eventually, the curvature is constant everywhere, and the canonical metric is achieved. The proposal aims at designing and implementing discrete curvature flow for volumes, and apply it in graphics, geometric modeling, medical imaging and many other engineering fields. The 3-manifolds are represented as tetrahedral meshes. The edge lengths and dihedral angles encode the Riemannian metric and curvatures of the mesh. Discrete curvature flow deforms the edge lengths according to the curvatures, such that at the steady state, the curvature is constant everywhere. Discrete curvature flow can be formulated as the gradient flow of special energy forms. The energies can be optimized using Newton's method; the critical point gives the desired metric. Furthermore, the proposal also uses volumetric harmonic differential forms to compute the geometric structures based on Hodge theory. The discrete curvature flow method is proposed to tackle several important engineering applications. Hexahedral meshing has been the Holy Grail in meshing research field for years. By deforming the volume to simpler shapes and tessellating the deformed volume, hex-remeshing can be obtained straightforwardly. Volumetric parameterization is the foundation for texture mapping, shape matching, registration and comparison. Curvature flow maps general volumes to canonical shapes, which induces natural parameterizations. Constructing volumetric splines, which is consistent with the boundary surface spline, is a long lasting open problem in geometric modeling field. The curvature flow method can offer new insights and tools to tackle the problem.
SGER:工程应用中的离散体积曲率流给定三维欧氏空间中的一个曲面,该曲面可以变形为三种典型形状之一:单位球面、平面和双曲圆盘。此外,变形是角度保持的。Poincare猜想和瑟顿的几何化猜想将这一事实推广到三维流形。基本上,一个三流形可以以规范的方式分解成几块,每一块都允许八种几何中的一种。正则黎曼度量在六面体网格划分、体参数化和体样条构造等工程应用中起着重要的作用。Poincare猜想的证明为计算这种度量提供了一个强有力的工具,Ricci流。 里奇流是将黎曼度量与曲率成比例地变形的过程,使得曲率根据热扩散而演变。最后,曲率在各处都是常数,并且达到了正则度量。该方案旨在设计和实现体的离散曲率流,并将其应用于图形学、几何造型、医学成像等工程领域。三维流形被表示为四面体网格。边长和二面角编码的黎曼度量和曲率的网格。离散曲率流根据曲率使边长变形,使得在稳定状态下,曲率在任何地方都是恒定的。离散曲率流可以表述为特殊能量形式的梯度流。能量可以使用牛顿法进行优化;临界点给出了所需的度量。此外,该建议还使用体积调和微分形式来计算基于霍奇理论的几何结构。离散曲率流法是针对几个重要的工程应用而提出的。六面体啮合一直是啮合研究领域的圣杯。通过将体积变形为更简单的形状并对变形的体积进行镶嵌,可以直接获得六边形重新网格化。体参数化是纹理映射、形状匹配、配准和比较的基础。曲率流将一般体积映射到规范形状,从而诱导自然参数化。构造与边界曲面样条相一致的体样条是几何造型领域一个长期悬而未决的问题。曲率流方法可以提供新的见解和工具来解决这个问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xianfeng Gu其他文献
A novel computer aided detection (CADe) scheme for colonic polyps based on colon structure decomposition
基于结肠结构分解的新型结肠息肉计算机辅助检测(CADe)方案
- DOI:
10.1109/nssmic.2013.6829287 - 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Huafeng Wang;Zhengrong Liang;Lihong C. Li;Hao Peng;Bowen Song;Hao Han;Yan Liu;Fangfang Han;Xianfeng Gu - 通讯作者:
Xianfeng Gu
Erratum to: Optimization of Surface Registrations Using Beltrami Holomorphic Flow
- DOI:
10.1007/s10915-011-9541-z - 发表时间:
2011-09-16 - 期刊:
- 影响因子:3.300
- 作者:
Lok Ming Lui;Tsz Wai Wong;Wei Zeng;Xianfeng Gu;Paul M. Thompson;Tony F. Chan;Shing-Tung Yau - 通讯作者:
Shing-Tung Yau
GRIP: Greedy Routing through dIstributed Parametrization for guaranteed delivery in WSNs
- DOI:
10.1007/s11276-014-0770-6 - 发表时间:
2014-07-09 - 期刊:
- 影响因子:2.100
- 作者:
Minqi Zhang;Feng Li;Ying He;Juncong Lin;Xianfeng Gu;Jun Luo - 通讯作者:
Jun Luo
Free-Radical-Promoted Copper-Catalyzed Intermolecular Cyanosulfonylation and Cyanotrifluoromethylation of Unactivated Alkenes in Water-Containing Solvents
自由基促进的铜催化含水溶剂中未活化烯烃的分子间氰磺酰化和氰基三氟甲基化
- DOI:
10.1021/acs.joc.8b02073 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Yan Zhu;Jinlong Tian;Xianfeng Gu;Yonghui Wang - 通讯作者:
Yonghui Wang
Computational generation and conformal fabrication of woven fabric structures by harmonic foliation
通过和谐叶理计算生成和机织物结构的保形制造
- DOI:
10.1016/j.cma.2020.112874 - 发表时间:
2020-05 - 期刊:
- 影响因子:7.2
- 作者:
Yang Guo;Qian Ye;Xiaopeng Zheng;Shikui Chen;Na Lei;Yuanqi Zhang;Xianfeng Gu - 通讯作者:
Xianfeng Gu
Xianfeng Gu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xianfeng Gu', 18)}}的其他基金
I-Corps: Developing A 3D Total Body Imaging and Analysis System for Early Detection of Skin Cancer
I-Corps:开发用于早期检测皮肤癌的 3D 全身成像和分析系统
- 批准号:
2115095 - 财政年份:2021
- 资助金额:
$ 7.9万 - 项目类别:
Standard Grant
Collaborative Research: Geometric Analysis of Computer and Social Networks
合作研究:计算机和社交网络的几何分析
- 批准号:
1418255 - 财政年份:2014
- 资助金额:
$ 7.9万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Algorithmic Aspects of Geometry for Using LIDAR and Wireless Sensor Networks for Combating Chemical Terror Attacks
合作研究:ATD:使用激光雷达和无线传感器网络对抗化学恐怖袭击的几何算法
- 批准号:
1221339 - 财政年份:2012
- 资助金额:
$ 7.9万 - 项目类别:
Standard Grant
Collaborative Research: CCF-TF: Computing Geometric Structures of 3-Manifolds
合作研究:CCF-TF:计算3流形的几何结构
- 批准号:
0830550 - 财政年份:2009
- 资助金额:
$ 7.9万 - 项目类别:
Standard Grant
IIS: III: Small: Conformal Geometry for Computer Vision
IIS:III:小:计算机视觉的共形几何
- 批准号:
0916286 - 财政年份:2009
- 资助金额:
$ 7.9万 - 项目类别:
Standard Grant
III-CXT: Collaborative Research: Integrated Modeling and Learning of Multimodality Data across Subjects for Brain Disorder Study
III-CXT:协作研究:针对脑部疾病研究的跨学科多模态数据的集成建模和学习
- 批准号:
0713145 - 财政年份:2007
- 资助金额:
$ 7.9万 - 项目类别:
Continuing Grant
MSPA-MCS: Discrete Curvature Flows on Graphics and Visualization
MSPA-MCS:图形和可视化上的离散曲率流
- 批准号:
0626223 - 财政年份:2006
- 资助金额:
$ 7.9万 - 项目类别:
Standard Grant
MSPA-MCS: Collaborative Research: Computer Graphics and Visualization Using Conformal Geometry
MSPA-MCS:协作研究:使用共形几何的计算机图形和可视化
- 批准号:
0528363 - 财政年份:2005
- 资助金额:
$ 7.9万 - 项目类别:
Standard Grant
CAREER: Conformal Geometry Applied to Shape Analysis and Geometric Modeling
职业:共形几何应用于形状分析和几何建模
- 批准号:
0448399 - 财政年份:2005
- 资助金额:
$ 7.9万 - 项目类别:
Continuing Grant
相似海外基金
REU Site: Research Experiences for Undergraduates in Algebra and Discrete Mathematics at Auburn University
REU 网站:奥本大学代数和离散数学本科生的研究经验
- 批准号:
2349684 - 财政年份:2024
- 资助金额:
$ 7.9万 - 项目类别:
Continuing Grant
Travel: NSF Student Travel Grant for 2024 ACM SIGSIM Principles of Advanced Discrete Simulation (PADS)
旅行:2024 年 ACM SIGSIM 高级离散仿真原理 (PADS) 的 NSF 学生旅行补助金
- 批准号:
2416160 - 财政年份:2024
- 资助金额:
$ 7.9万 - 项目类别:
Standard Grant
CRII: FET: Quantum Advantages through Discrete Quantum Walks
CRII:FET:离散量子行走的量子优势
- 批准号:
2348399 - 财政年份:2024
- 资助金额:
$ 7.9万 - 项目类别:
Standard Grant
NEWWAVE: New methods for analysing travelling waves in discrete systems with applications to neuroscience
NEWWAVE:分析离散系统中行波的新方法及其在神经科学中的应用
- 批准号:
EP/Y027531/1 - 财政年份:2024
- 资助金额:
$ 7.9万 - 项目类别:
Fellowship
Polymer Nanocomposites using Discrete Nanoparticles and Bicontinuous Scaffolds: New Strategies for Connective Morphologies and Property Control
使用离散纳米粒子和双连续支架的聚合物纳米复合材料:连接形态和性能控制的新策略
- 批准号:
2407300 - 财政年份:2024
- 资助金额:
$ 7.9万 - 项目类别:
Continuing Grant
Identifying user preferences to optimize HIV/Sexually Transmitted infections test among international migrants and tourists in Japan: A Discrete Choice Experiment
确定用户偏好以优化日本国际移民和游客的艾滋病毒/性传播感染测试:离散选择实验
- 批准号:
24K20238 - 财政年份:2024
- 资助金额:
$ 7.9万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Identification, estimation, and inference of the discount factor in dynamic discrete choice models
动态离散选择模型中折扣因子的识别、估计和推断
- 批准号:
24K04814 - 财政年份:2024
- 资助金额:
$ 7.9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Symmetry Methods for Discrete Equations and Their Applications
离散方程的对称性方法及其应用
- 批准号:
24K06852 - 财政年份:2024
- 资助金额:
$ 7.9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Harnessing the Reactivity of Strained Macrocycles to Access Discrete Carbon Nanostructures
利用应变大环化合物的反应性来获得离散的碳纳米结构
- 批准号:
2400147 - 财政年份:2024
- 资助金额:
$ 7.9万 - 项目类别:
Standard Grant