Electric Conduction, Adhesion Forces and Discharge Processes in a Particle-Particle-Contact - Highly Resistive Materials

颗粒-颗粒接触中的导电、粘附力和放电过程 - 高电阻材料

基本信息

项目摘要

In case of electrical conduction across the particle-particle-contacts in highly resistive dust layers, the generation of electrostatic adhesion force is strongly coupled to the mechanisms of electrical transport in the solid. High field strengths lead to a significant increase of adhesive forces. For the electrical resistivity, a pronounced non-ohmic behaviour with strong time effects is observed. Aim of the project is to investigate the underlying mechanisms by experiments and simulations on the microscopic scale. Our previous investigations have shown that the mechanisms of charge transport in highly resistive particle layers correspond to those in electrete materials. During current transport, positive and negative charge carriers are injected into the material, and significant electrostatic space charges are formed. The time effects are explained by the mechanisms of charge injection and by the immobilization of charges in the particle volume. In the contact gaps and pore spaces, charge transport can occur by the mechanisms of thermionic field emission and gas discharge. Even though strong electrostatic adhesion forces are generated on the microscopic level, the macroscopic space charge excess can lead to a mechanical failure of highly resistive dust layers by electrostatic repulsion. In the continuation of the project, the successful measurements on single particle-particle contacts shall be improved and continued. Here, the current uptake and the contact force are measured (time-resolving) as a function of particle diameter, contact gap distance, particle material and applied voltage. The mechanism of charge transport across the contact gap shall be verified by observing the emission of light and gas ions. Within the simulation part of the project, a model incorporating the mechanisms of charge transport in the solid and in the contact gap is being developed. Via local potentials, field strengths, charge carrier densities and current densities, the conduction or discharge mechanisms in the gap and the contact force are to be obtained. Here as well, the appropriate modelling of time effects is an important task.The simulations will be verified using results from the single particle experiments. Finally, we will try to simulate chain-like particle arrangements as a model for macroscopic particle layers. Additionally, experiments on particle layers and on massive layers of (dielectric) materials will be made.
在高阻粉尘层中粒子-粒子-接触之间存在导电的情况下,静电粘附力的产生与固体中的电传输机制强烈耦合。高场强导致粘附力显著增加。对于电阻率,观察到明显的非欧姆行为,具有很强的时间效应。该项目的目的是通过微观尺度上的实验和模拟来研究其潜在的机制。我们以前的研究表明,高阻粒子层中的电荷传输机制与驻极体材料中的机制相一致。在电流传输过程中,正负电荷载流子被注入材料中,并形成显著的静电空间电荷。时间效应可以通过电荷注入机制和粒子体积内电荷的固定来解释。在接触间隙和空隙中,电荷输运可能通过热电子场发射和气体放电机制发生。尽管在微观层面上会产生很强的静电附着力,但宏观上的空间电荷过剩会导致高阻粉尘层因静电排斥而发生机械破坏。在项目的继续实施中,单颗粒-颗粒接触的成功测量将得到改进和继续。在这里,电流吸收和接触力被测量(时间分辨率)作为颗粒直径、接触间隙距离、颗粒材料和施加电压的函数。应通过观察光和气体离子的发射来验证通过触点间隙的电荷传输机制。在该项目的模拟部分,正在开发一个包含固体中和接触间隙中电荷传输机制的模型。通过局域电势、场强、载流子密度和电流密度,可以得到间隙中的导电或放电机制和接触力。在这里,时间效应的适当建模也是一项重要的任务。模拟将使用单粒子实验的结果进行验证。最后,我们将尝试模拟链状粒子排列,作为宏观粒子层的模型。此外,还将在粒子层和块状(介电)材料层上进行实验。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Abscheidung hochohmiger Stäube in einem Elektrofilter mit niederfrequenter Wechselspannung
低频交流电压静电除尘器中高电阻粉尘的分离
  • DOI:
    10.1002/cite.201600157
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Aleksin;Riebel;Ulrich;Kurtsiefer;Ribbeck
  • 通讯作者:
    Ribbeck
Das elektrische Verhalten hochohmiger Stäube
高电阻粉尘的电行为
  • DOI:
    10.1002/cite.201200110
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Riebel;Aleksin
  • 通讯作者:
    Aleksin
Force and current in a contact gap between single highly resistive particles: experimental observations
  • DOI:
    10.1088/2399-6528/ab3e2b
  • 发表时间:
    2019-09
  • 期刊:
  • 影响因子:
    1.2
  • 作者:
    Alpesh Laxman Vora;Jan Stepputat;U. Riebel
  • 通讯作者:
    Alpesh Laxman Vora;Jan Stepputat;U. Riebel
A new understanding of electric conduction in highly resistive dusts and bulk powders
  • DOI:
    10.1016/j.powtec.2016.02.031
  • 发表时间:
    2016-06
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Yury Aleksin;Alpesh Laxman Vora;U. Riebel
  • 通讯作者:
    Yury Aleksin;Alpesh Laxman Vora;U. Riebel
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr.-Ing. Ulrich Riebel其他文献

Professor Dr.-Ing. Ulrich Riebel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr.-Ing. Ulrich Riebel', 18)}}的其他基金

Fundamentals of energy efficient precipitation and inactivation of COVID-19 aerosols by means of an ozone-free electrostatic precipitator designed for indoor use.
通过专为室内使用设计的无臭氧静电除尘器实现节能降水和灭活 COVID-19 气溶胶的基础知识。
  • 批准号:
    468800814
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Entwicklung einer optischen Messtechnik zur Erfassung der Kinetik schneller Fällungsreaktionen
开发光学测量技术来记录快速沉淀反应的动力学
  • 批准号:
    109485457
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Grundlagenuntersuchung zur Statistik von Extinktionssignalen mit dem Ziel der Bestimmung von Partikelgrößenverteilungen aus dem zeitlichen Verhalten der Transmissionsfluktuation
对消光信号统计的基础研究,目的是根据传输波动的时间行为确定颗粒尺寸分布
  • 批准号:
    5306268
  • 财政年份:
    1997
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Fundamentals of particle charging by free electrons in electrical coronas
电晕中自由电子对粒子充电的基本原理
  • 批准号:
    464808350
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

"Mimicking Human Head Sound Responses": Towards an Anatomically Accurate Head Prototype for Bone Conduction Crosstalk Cancellation Analysis with Humans
“模仿人类头部声音反应”:构建解剖学上准确的头部原型,用于人类骨传导串扰消除分析
  • 批准号:
    24K20786
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Understanding the Key to Unlocking Fast Li-ion Conduction in Fluoride-based Solid Electrolytes
了解氟化物固体电解质中实现快速锂离子传导的关键
  • 批准号:
    2329953
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Carboxyl-alkyl Functionalization for Sustainable Mixed Conduction Polymers: molecular design and mechanistic insights
可持续混合导电聚合物的羧基烷基官能化:分子设计和机理见解
  • 批准号:
    2408881
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Elucidation of surface proton hopping conduction mechanism using neutron quasi-elastic scattering measurements
使用中子准弹性散射测量阐明表面质子跳跃传导机制
  • 批准号:
    23K17937
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Distinct Ion Channel Pools and Intercalated Disk Nanoscale Structure Regulate Cardiac Conduction
独特的离子通道池和闰盘纳米级结构调节心脏传导
  • 批准号:
    10676368
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
3D Bioprinting of a Bioelectric Cell Bridge for Re-engineering Cardiac Conduction
用于重新设计心脏传导的生物电细胞桥的 3D 生物打印
  • 批准号:
    10753836
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
spin conduction engineering for the p-n junction of a spinel oxide heterointerface
尖晶石氧化物异质界面 p-n 结的自旋传导工程
  • 批准号:
    23H01438
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
CAREER: Block Polyelectrolyte Complexes for Controlled Mixed Ionic-Electronic Conduction
职业:用于受控混合离子电子传导的嵌段聚电解质复合物
  • 批准号:
    2237888
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Precise and quick prediction of electron conduction levels in organic semiconductors using machine learning
使用机器学习精确快速预测有机半导体中的电子传导水平
  • 批准号:
    23K17900
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Heart conduction system sensor based on van der Waals heterostructures
基于范德华异质结构的心脏传导系统传感器
  • 批准号:
    BB/X003736/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了