Problems in Chaotic Dynamics

混沌动力学问题

基本信息

  • 批准号:
    0456240
  • 负责人:
  • 金额:
    $ 25.37万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-08-01 至 2009-07-31
  • 项目状态:
    已结题

项目摘要

Project Summary This proposal is for a three-year theoretical/computational program on the study of chaotic systems. The principal investigator and graduate students will carry out the work. It is anticipated that, through their participation in the proposed research, the graduate students will become proficient in the theory of nonlinear dynamical systems, the design and implementation of computer experiments, and the modeling of physical systems. Two problem areas will be addressed: 1) The onset of synchronization in systems consisting of many interconnected dynamical units: Synchronization in systems of many interconnected dynamical (perhaps chaotic) units depends on the characteristics of the individual connected units, on the topology of the coupling network, and on the strengths of the couplings along each link. Our past work in this area was on systems of chaotic units where the coupling was global (all-to-all) and all links had equal coupling strength, and focused on providing a general theory of the transition from incoherent behavior to periodic oscillation. We propose to greatly extend this work to much more general connection topologies. This problem is important in physical and chemical systems, but perhaps its greatest interest is for biological systems where coherent oscillations are extremely prevalent and apparently result from the interaction of many small units. 2) Chaotic mixing and advection in fluids: This general class of problems is extremely important for a large variety of applications, yet there remain very interesting and significant basic open problems. Our past work has introduced the concept of finite time Lyapunov exponents and large deviation theory to this area, and we have used this to study fractal dimension, power spectra, and structure functions in a variety of flow situations. The main area of our proposed investigation will be on the effect of rigid boundaries in confined chaotic flows (potentially significant in most laboratory experiments). Intellectual Merit The onset of synchronism in large highly connected systems is a basic problem of inherent interest, and addresses important real-world problems, such as oscillatory behavior in biological systems. Chaotic mixing and advection is a problem of fundamental importance with impact in fields ranging from atmospheric science to chemical engineering. For both problem areas, previous work by the PI will serve as a strong base and starting point for the proposed research. Broader Impacts The proposed activity will promote the training of graduate students in important areas of research, and, by interaction with the larger chaos group at the university, it will educate others in these issues. The understanding gained through this research will be useful in a variety of fields, including physics, biology , engineering, and meteorology.
本项目是一个为期三年的混沌系统理论/计算研究项目。主要研究者和研究生将开展这项工作。预计,通过他们在拟议的研究参与,研究生将成为精通非线性动力系统的理论,计算机实验的设计和实施,以及物理系统的建模。两个问题领域将被解决:1)在系统中的同步的开始,由许多相互关联的动态(也许是混沌)单元的系统中的同步取决于单个连接的单元的特性,在耦合网络的拓扑结构,以及在强度的耦合沿着每个链接。我们过去在这方面的工作是在系统的混沌单位的耦合是全球性的(所有对所有)和所有的链接有相等的耦合强度,并专注于提供一个一般理论的过渡,从非相干行为的周期性振荡。我们建议大大扩展这项工作更一般的连接拓扑结构。这个问题在物理和化学系统中很重要,但它最大的兴趣可能是生物系统,其中相干振荡非常普遍,显然是由许多小单元的相互作用引起的。2)流体中的混沌混合和平流:这类问题对于各种各样的应用都非常重要,但仍然存在非常有趣和重要的基本开放问题。我们过去的工作将有限时间李雅普诺夫指数和大偏差理论的概念引入到该领域,并利用它来研究各种流动情况下的分维、功率谱和结构函数。我们提出的调查的主要领域将是在有限的混沌流(在大多数实验室实验中可能显着)的刚性边界的效果。在大型高度连接的系统中同步的开始是一个基本的问题,它解决了重要的现实问题,例如生物系统中的振荡行为。混沌混合和平流是一个重要的基本问题,在从大气科学到化学工程的各个领域都有影响。对于这两个问题领域,PI以前的工作将作为拟议研究的坚实基础和起点。更广泛的影响拟议的活动将促进研究生在重要研究领域的培训,并通过与大学中更大的混乱集团的互动,它将在这些问题上教育其他人。通过这项研究获得的理解将在物理学,生物学,工程学和气象学等各个领域都很有用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Edward Ott其他文献

The knowledge transfer potential of online data pools on nature-based solutions.
基于自然的解决方案在线数据池的知识转移潜力。
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    9.8
  • 作者:
    B. Schröter;Aude Zingraff;Edward Ott;Joshua Huang;Frank Hüesker;C. Nicolas;N. Schröder
  • 通讯作者:
    N. Schröder
Topology in chaotic scattering
混沌散射中的拓扑
  • DOI:
    10.1038/20573
  • 发表时间:
    1999-05-27
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    David Sweet;Edward Ott;James A. Yorke
  • 通讯作者:
    James A. Yorke
Bubbling transition.
冒泡过渡。
Crowd synchrony on the Millennium Bridge
千禧桥上的人群同步现象
  • DOI:
    10.1038/438043a
  • 发表时间:
    2005-11-02
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Steven H. Strogatz;Daniel M. Abrams;Allan McRobie;Bruno Eckhardt;Edward Ott
  • 通讯作者:
    Edward Ott
Measurement of wave chaotic eigenfunctions in the time-reversal symmetry-breaking crossover regime
时间反演对称性破缺交叉状态下波混沌本征函数的测量
  • DOI:
  • 发表时间:
    1999
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Seok;Ali Gokirmak;Dong;J. S. Bridgewater;Edward Ott;Thomas M. Antonsen;S. Anlage
  • 通讯作者:
    S. Anlage

Edward Ott的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Edward Ott', 18)}}的其他基金

Machine Learning, Reservoir Computing, and Nonlinear Dynamics
机器学习、油藏计算和非线性动力学
  • 批准号:
    1813027
  • 财政年份:
    2019
  • 资助金额:
    $ 25.37万
  • 项目类别:
    Continuing Grant
Collaborative Research: MSPA-CSE: State Estimation and Predictability of High-Dimensional Complex Systems--Theory and Experiment
合作研究:MSPA-CSE:高维复杂系统的状态估计和可预测性——理论与实验
  • 批准号:
    0434225
  • 财政年份:
    2004
  • 资助金额:
    $ 25.37万
  • 项目类别:
    Standard Grant
Scaling and Fractal Dimension in Chaotic Systems
混沌系统中的标度和分形维数
  • 批准号:
    0098632
  • 财政年份:
    2001
  • 资助金额:
    $ 25.37万
  • 项目类别:
    Continuing Grant
Theoretical Studies of Physical Processes in Intense Ion Beams
强离子束物理过程的理论研究
  • 批准号:
    7719961
  • 财政年份:
    1978
  • 资助金额:
    $ 25.37万
  • 项目类别:
    Continuing Grant
Theoretical and Computer Simulation Studies of the Equatorial Ionosphere
赤道电离层的理论与计算机模拟研究
  • 批准号:
    7610914
  • 财政年份:
    1976
  • 资助金额:
    $ 25.37万
  • 项目类别:
    Standard Grant

相似海外基金

Stable structures and chaotic dynamics in fluid flows
流体流动中的稳定结构和混沌动力学
  • 批准号:
    EP/X020886/1
  • 财政年份:
    2023
  • 资助金额:
    $ 25.37万
  • 项目类别:
    Research Grant
CAREER: Chaotic Dynamics of Systems with Noise
职业:噪声系统的混沌动力学
  • 批准号:
    2237360
  • 财政年份:
    2023
  • 资助金额:
    $ 25.37万
  • 项目类别:
    Continuing Grant
Chaotic Dynamics and Quantum Field Theory
混沌动力学和量子场论
  • 批准号:
    2209116
  • 财政年份:
    2022
  • 资助金额:
    $ 25.37万
  • 项目类别:
    Continuing Grant
Chaotic dynamics in deep neural networks and its applications to information processing
深度神经网络中的混沌动力学及其在信息处理中的应用
  • 批准号:
    20K11985
  • 财政年份:
    2020
  • 资助金额:
    $ 25.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Scrambling and chaotic dynamics in quantum many-body systems
量子多体系统中的扰乱和混沌动力学
  • 批准号:
    20K03787
  • 财政年份:
    2020
  • 资助金额:
    $ 25.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Ergodicity, Rigidity, and the Interplay Between Chaotic and Regular Dynamics
遍历性、刚性以及混沌动力学和规则动力学之间的相互作用
  • 批准号:
    1900411
  • 财政年份:
    2019
  • 资助金额:
    $ 25.37万
  • 项目类别:
    Standard Grant
Guiding Chaotic Swarm Dynamics in Evolving Networks of Agents with Privacy and Fairness Considerations
考虑隐私和公平的情况下,在不断发展的代理网络中指导混沌群体动力学
  • 批准号:
    1932991
  • 财政年份:
    2019
  • 资助金额:
    $ 25.37万
  • 项目类别:
    Standard Grant
Complex and Chaotic Biological Dynamics
复杂混沌的生物动力学
  • 批准号:
    38165-2013
  • 财政年份:
    2018
  • 资助金额:
    $ 25.37万
  • 项目类别:
    Discovery Grants Program - Individual
CDS&E-MSS: Predictive Modeling and Data-Driven Closure of Chaotic and Noisy Dynamics in Discrete Time
CDS
  • 批准号:
    1821286
  • 财政年份:
    2018
  • 资助金额:
    $ 25.37万
  • 项目类别:
    Continuing Grant
Influence of chaotic dynamics on the coexistence of traits: Experimental studies with aquatic microbes
混沌动力学对性状共存的影响:水生微生物的实验研究
  • 批准号:
    394824977
  • 财政年份:
    2017
  • 资助金额:
    $ 25.37万
  • 项目类别:
    Priority Programmes
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了