Ergodicity, Rigidity, and the Interplay Between Chaotic and Regular Dynamics

遍历性、刚性以及混沌动力学和规则动力学之间的相互作用

基本信息

  • 批准号:
    1900411
  • 负责人:
  • 金额:
    $ 33万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-07-01 至 2023-06-30
  • 项目状态:
    已结题

项目摘要

The aim of this project is to discover new phenomena in the area of dynamical systems. Dynamical systems ("dynamics," for short) is the study of motion, and in particular motion that is dictated by an unchanging set of rules, such as the Newtonian forces controlling mechanical motion. Well-known experimental phenomena in dynamics such as chaotic trajectories combined with stable motion have been observed experimentally but are far from being fully understood from a theoretical perspective. The research will address the theoretical mechanisms behind chaotic motion in broad classes of dynamical systems, which include systems of both a physical and geometric nature. Based on previous work of the principal investigator and her collaborators, the interplay between a numerical invariant called entropy and chaotic motion will be further understood. On the flip side, the principal investigator proposes several problems connecting entropy and related invariants with a phenomenon called rigidity. Rigidity occurs when quantitatively small changes to the rules guiding a system force fundamental qualitative changes in the resulting dynamics. Identifying the rigid systems is a first step toward classification of certain peculiar dynamical behaviors observed in physical and geometric systems. An important aspect of the project is to further interaction between mathematical and adjacent scientific communities, such as physics. The principal investigator has already collaborated in questions surrounding the design of particle accelerators and is currently collaborating with a physicist studying the quantum dynamics behind the emergence of black holes. Furthermore, the principal investigator has given several public lectures on dynamics and has written in the popular press about the work of mathematicians. She proposes to expand these activities in the coming years.Dynamics is the study of systems (for example, a state space for a physical process) that evolve over time according to a deterministic set of rules. Well-studied classes of such dynamical systems include the so-called hyperbolic systems, which display chaotic, unpredictable features at every point, and KAM systems, which have stable regions of regular motion. The partially hyperbolic systems are a more general class of dynamical systems than the hyperbolic class and include systems that combine hyperbolicity in some directions with KAM behavior in other directions. Partially hyperbolic systems occur widely in dynamical systems arising in physics; for example, planetary motion usually contains partially hyperbolic sub-dynamics, and the effective construction of particle accelerators (used in biological imaging, as well as theoretical physics) requires a detailed understanding of both KAM and partially hyperbolic dynamics. The principal investigator has a well-developed research plan of over 15 years studying partially hyperbolic systems and is poised to raise the theory of these systems to a new level of generality and applicability. The impacts of this research will be seen in future applications to systems of a concrete origin, in biology, physics and engineering. The principal investigator is currently collaborating with the particle accelerator group at Fermilab to explore some of these potential applications. The research supported by this award is guided by the far-reaching goal of developing a general theory of partially hyperbolic systems along the lines of the hyperbolic theory developed in the past 40 years. In particular the principal investigator proposes to study: ergodic properties of conservative partially hyperbolic diffeomorphisms; actions of large collections of diffeomorphisms and embeddings on manifolds; and rigidity phenomena in actions of groups. A highlight of the proposed research is to investigate the interaction between hyperbolicity and KAM phenomena.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个项目的目的是发现动力系统领域的新现象。动力系统(简称“动力学”)是对运动的研究,特别是由一套不变的规则所规定的运动,例如控制机械运动的牛顿力。动力学中众所周知的实验现象,如混沌轨迹与稳定运动相结合,已经在实验上观察到了,但从理论上还远未完全理解。这项研究将解决大类动力系统中混沌运动背后的理论机制,其中包括物理和几何性质的系统。基于主要研究人员和她的合作者之前的工作,我们将进一步了解称为熵的数值不变量和混沌运动之间的相互作用。另一方面,首席研究人员提出了几个问题,将熵和相关不变量与一种称为刚性的现象联系起来。当引导一个系统的规则发生数量上的微小变化,迫使由此产生的动态发生根本的质变时,就会发生刚性。识别刚性系统是对在物理和几何系统中观察到的某些特殊动力学行为进行分类的第一步。该项目的一个重要方面是进一步促进数学和邻近科学界之间的互动,例如物理学。首席研究员已经在围绕粒子加速器设计的问题上进行了合作,目前正在与一名物理学家合作,研究黑洞出现背后的量子动力学。此外,首席研究员还做了几次关于动力学的公开讲座,并在大众媒体上发表了关于数学家工作的文章。她建议在未来几年扩大这些活动。动力学是研究根据一套确定性规则随时间演变的系统(例如,物理过程的状态空间)。这类动力系统研究得很好的类别包括所谓的双曲系统和KAM系统,双曲系统在每一点都表现出混沌的、不可预测的特征,KAM系统具有稳定的规则运动区域。部分双曲系统是一类比双曲系统更一般的动力系统,它包括在一些方向上结合双曲性和在另一个方向上的KAM行为的系统。部分双曲系统广泛存在于物理产生的动力学系统中;例如,行星运动通常包含部分双曲子动力学,而有效构建粒子加速器(用于生物成像和理论物理)需要对KAM和部分双曲动力学有详细的了解。首席研究员有一个超过15年研究部分双曲型系统的完善的研究计划,并准备将这些系统的理论提高到一个新的一般性和适用性的水平。这项研究的影响将在未来应用于具体起源的系统中,在生物学、物理学和工程学中。首席研究员目前正在与费米实验室的粒子加速器小组合作,探索其中一些潜在的应用。该奖项支持的研究是以一个深远的目标为指导的,即沿着过去40年发展的双曲型理论发展部分双曲型系统的一般理论。特别是,主要研究者建议研究:保守部分双曲微分同胚的遍历性;大的微分同胚集和流形上嵌入的作用;以及群作用中的刚性现象。这项拟议研究的一个亮点是调查双曲性和KAM现象之间的相互作用。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Ratner's work on unipotent flows and its impact.
拉特纳关于单能流及其影响的工作。
Symplectomorphisms with positive metric entropy
Pathology and asymmetry: Centralizer rigidity for partially hyperbolic diffeomorphisms
  • DOI:
    10.1215/00127094-2021-0053
  • 发表时间:
    2019-02
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Danijela Damjanović;A. Wilkinson;Disheng Xu
  • 通讯作者:
    Danijela Damjanović;A. Wilkinson;Disheng Xu
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Anne Wilkinson其他文献

The Effectiveness of a Tailored Faculty Development Program for Undergraduate Mentoring and Its Impact on Mentor’s Perceptions: A Mixed Methods Study
本科生导师定制教师发展计划的有效性及其对导师看法的影响:混合方法研究
  • DOI:
    10.7759/cureus.58863
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Smita Pakhmode;Yamini V. Pusdekar;Madhur Gupta;Anne Wilkinson;S. Uppu;Sheel Wasnik
  • 通讯作者:
    Sheel Wasnik
How Graduate Interior Design Programs Prepare Emerging Educators to Teach
室内设计研究生课程如何为新兴教育工作者做好教学准备
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Anne Wilkinson
  • 通讯作者:
    Anne Wilkinson
The Histopathological Spectrum of Scrotal Lesions in a Tertiary Care Hospital: A Cross-Sectional Study
三级医院阴囊病变的组织病理学谱:横断面研究
  • DOI:
    10.7759/cureus.52767
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Apara Desai;Anne Wilkinson
  • 通讯作者:
    Anne Wilkinson
Palliative Care Nursing
姑息治疗护理
  • DOI:
    10.1891/9780826127198.0001
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Anne Wilkinson;Deborah Witt Sherman;Tonie Metheny;M. Matzo
  • 通讯作者:
    M. Matzo
Financing of care for fatal chronic disease: opportunities for Medicare reform.
致命慢性病护理的融资:医疗保险改革的机会。
  • DOI:
    10.1136/ewjm.175.5.299
  • 发表时间:
    2001
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Lynn;Anne Wilkinson;L. Etheredge
  • 通讯作者:
    L. Etheredge

Anne Wilkinson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Anne Wilkinson', 18)}}的其他基金

Rigid Structures and Statistical Properties of Smooth Systems
光滑系统的刚性结构和统计特性
  • 批准号:
    2154796
  • 财政年份:
    2022
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
INSTABILITIES IN DYNAMICAL SYSTEMS
动态系统的不稳定性
  • 批准号:
    1500897
  • 财政年份:
    2015
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Robust and generic mechanisms in smooth dynamics
平稳动力学中稳健且通用的机制
  • 批准号:
    1402852
  • 财政年份:
    2014
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant
Partial hyperbolicity and rigidity
部分双曲性和刚性
  • 批准号:
    1316534
  • 财政年份:
    2012
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant
Conference "From Dynamics to Complexity"
“从动态到复杂性”会议
  • 批准号:
    1201398
  • 财政年份:
    2012
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Partial hyperbolicity and rigidity
部分双曲性和刚性
  • 批准号:
    1001727
  • 财政年份:
    2010
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant
Partial Hyperbolicity and the Structure of Diffeomorphism Groups
偏双曲性和微分同胚群的结构
  • 批准号:
    0701018
  • 财政年份:
    2007
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant
International Workshop on Global Dynamics beyond Uniform Hyperbolicity
超越统一双曲性的全球动力学国际研讨会
  • 批准号:
    0552282
  • 财政年份:
    2006
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Partial Hyperbolicity and Rigidity
部分双曲性和刚性
  • 批准号:
    0401326
  • 财政年份:
    2005
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant
Conference on Robustness and Partial Hyperbolicity
鲁棒性和部分双曲性会议
  • 批准号:
    0335551
  • 财政年份:
    2003
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant

相似海外基金

Group Actions, Rigidity, and Invariant Measures
群体行动、刚性和不变措施
  • 批准号:
    2400191
  • 财政年份:
    2024
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Conference: Groups Actions and Rigidity: Around the Zimmer Program
会议:团体行动和刚性:围绕 Zimmer 计划
  • 批准号:
    2349566
  • 财政年份:
    2024
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
CAREER: Rigidity in Mapping class groups and homeomorphism groups
职业:映射类群和同胚群中的刚性
  • 批准号:
    2339110
  • 财政年份:
    2024
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant
THE ROLE OF MEDIUM SPINY NEURONS IN SLEEP DEPRIVATION-INDUCED COGNITIVE RIGIDITY.
中型棘神经元在睡眠剥夺引起的认知僵化中的作用。
  • 批准号:
    10656057
  • 财政年份:
    2023
  • 资助金额:
    $ 33万
  • 项目类别:
The geometry, rigidity and combinatorics of spaces and groups with non-positive curvature feature
具有非正曲率特征的空间和群的几何、刚度和组合
  • 批准号:
    2305411
  • 财政年份:
    2023
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Rigidity and boundary phenomena for geometric variational problems
几何变分问题的刚性和边界现象
  • 批准号:
    DE230100415
  • 财政年份:
    2023
  • 资助金额:
    $ 33万
  • 项目类别:
    Discovery Early Career Researcher Award
Pioneering arithmetic topology around cyclotomic units and application to profinite rigidity
围绕分圆单元的开创性算术拓扑及其在有限刚度上的应用
  • 批准号:
    23K12969
  • 财政年份:
    2023
  • 资助金额:
    $ 33万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Constraints, Rigidity, and Risk in Global Supply Chains
全球供应链的约束、刚性和风险
  • 批准号:
    2315629
  • 财政年份:
    2023
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Singularities and rigidity in geometric evolution equations
几何演化方程中的奇异性和刚性
  • 批准号:
    2304684
  • 财政年份:
    2023
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Harmonic Maps, Geometric Rigidity, and Non-Abelian Hodge Theory
调和映射、几何刚性和非阿贝尔霍奇理论
  • 批准号:
    2304697
  • 财政年份:
    2023
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了