Function Theory of Several Complex Variables

多复变量函数论

基本信息

  • 批准号:
    0500626
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-07-01 至 2008-06-30
  • 项目状态:
    已结题

项目摘要

Abstract:The principal Investigator proposes in this project to work on a number of problems in the area of several complex variables and Cauchy-Riemann Analysis. These problems are not just important from the point of view of complex analysis, but also from the perspective of non-linear analysis, partial differential equations, complex singularity theory and mechanical engineering. More specifically, the PI wishes to further the present understanding of various rigidity phenomena in complex analysis and complex singularity theory. The PI would like to continue his previous investigation on the holomorphic invariant theory for real submanifolds embedded in the complex Euclidean spaces. The investigation of the intrinsic connections of the holomorphic theory of real submanifolds in a complex manifold with many well-known problems in classical mechanics, non-linear partial differential equations and classical dynamics will also be pursued. The PI intends to carry out the simultaneous embedding problem for a CR family of embeddable compact strongly pseudoconvex three-dimensional CR manifolds. Various geometric and analytic properties for Cauchy-Riemann mappings will be studied, too.Complex numbers and the theory for functions with complex variables have become, since the 19th century, indispensable tools in many areas of mathematics and in its application to other areas of science and engineering. Indeed, the solutions of many problems in the appliedsciences could ultimately depend on improvements in these complex analytic tools and a better understanding of their basic properties. For instance, in material science, the standard method for treating multi-directional stresses in a uniform way is to represent them as complex numbers or, in more complicated situations, as complex functions. It then turns out, for instance, that the direction of the propagation of cracks in materials is related to the properties of certain equations associated with these complex numbers or functions. Results of the research to be carried out in this project may lead to the discovery of new properties of solutions of these equations, which would then translate to a deeper understanding of the related mechanical properties of materials.
摘要:主要研究人员在这个项目中提出了在多复变和柯西-黎曼分析领域的一些问题的工作。这些问题不仅从复分析的角度具有重要意义,而且从非线性分析、偏微分方程组、复奇点理论和机械工程的角度也具有重要意义。更具体地说,PI希望加深目前对复分析和复奇点理论中各种刚性现象的理解。PI愿意继续他之前对嵌入在复欧氏空间中的实子流形的全纯不变理论的研究。研究复流形中实子流形的全纯理论与经典力学、非线性偏微分方程组和经典动力学中的许多著名问题之间的内在联系。PI研究了一族可嵌入的紧致强伪凸三维CR流形的同时嵌入问题。课程还将研究柯西-黎曼映射的各种几何和解析性质。自19世纪以来,复数和复变量函数理论已成为许多数学领域及其在其他科学和工程领域应用中不可或缺的工具。事实上,应用科学中许多问题的解决最终可能取决于这些复杂分析工具的改进和对其基本性质的更好理解。例如,在材料科学中,统一处理多方向应力的标准方法是将它们表示为复数,或者在更复杂的情况下表示为复杂函数。例如,结果表明,材料中裂纹扩展的方向与与这些复数或函数相关的某些方程的性质有关。本项目将开展的研究结果可能导致这些方程解的新性质的发现,这将转化为对材料相关力学性质的更深层次的理解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiaojun Huang其他文献

Extension of multivalued holomorphic functions on a Stein space
Stein 空间上多值全纯函数的扩展
  • DOI:
    10.1007/s00208-022-02517-2
  • 发表时间:
    2022-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xiaojun Huang;Xiaoshan Li
  • 通讯作者:
    Xiaoshan Li
Normality of meromorphic functions with multiple zeros and shared values
Comparable outcomes of partially matched related and matchedbr /related allogeneic hematopoietic cell transplantation followingbr /reduced-intensity conditioning in adult patients with Philadelphiabr /chromosome-negative acute lymp
费城染色体阴性急性淋巴瘤成人患者低强度调节后部分匹配相关和匹配相关同种异体造血细胞移植的结果可比较
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Depei Wu;Huisheng Ai;Xiaojun Huang;Yue Han;Yang Xu;Aining Sun;Qian Wu;Xiaowen Tang;Zhengzheng Fu
  • 通讯作者:
    Zhengzheng Fu
Arginine-Selective Chemical Labeling Approach for Identification and Enrichment of Reactive Arginine Residues in Proteins
用于鉴定和富集蛋白质中反应性精氨酸残基的精氨酸选择性化学标记方法
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Maheshika S K Wanigasekara;Xiaojun Huang;J. K. Chakrabarty;A. Bugarin;S. Chowdhury
  • 通讯作者:
    S. Chowdhury
Tunable quintuple-band polarization-insensitive wide-angle metamaterial absorber with single-layered graphene in terahertz range
太赫兹范围内单层石墨烯可调谐五波段偏振不敏感广角超材料吸收器
  • DOI:
    10.1088/2053-1591/ab196b
  • 发表时间:
    2019-06
  • 期刊:
  • 影响因子:
    2.3
  • 作者:
    Yujun Li;Xiaojun Huang;Siqi Huang;Yanfei Zhou;Jiong Wu;Chengwen Wang;Zhaoyang Shen;Helin Yang
  • 通讯作者:
    Helin Yang

Xiaojun Huang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xiaojun Huang', 18)}}的其他基金

Function Theory of Several Complex Variables
多复变量函数论
  • 批准号:
    2247151
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Function Theory of Several Complex Variables
多复变量函数论
  • 批准号:
    2000050
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Function Theory of Several Complex Variables
多复变量函数论
  • 批准号:
    1665412
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Function Theory of Several Complex Variables
多复变量函数论
  • 批准号:
    1363418
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Function Theory of Several Complex Variables
多复变量函数论
  • 批准号:
    1101481
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
International Conference on Several Complex Variables, Complex Geometry and Partial Differential Equations
多复变量、复几何与偏微分方程国际会议
  • 批准号:
    0901662
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Function Theory of Several Complex Variables
多复变量函数论
  • 批准号:
    0801056
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Function Theory in Several Complex Variables
多复变量的函数论
  • 批准号:
    0200689
  • 财政年份:
    2002
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Function Theory in Several Complex Variables
多复变量的函数论
  • 批准号:
    9970439
  • 财政年份:
    1999
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mathematical Sciences Postdoctoral Research Fellowships
数学科学博士后研究奖学金
  • 批准号:
    9627423
  • 财政年份:
    1996
  • 资助金额:
    --
  • 项目类别:
    Fellowship Award

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
  • 批准号:
    12247163
  • 批准年份:
    2022
  • 资助金额:
    18.00 万元
  • 项目类别:
    专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
  • 批准号:
    12126512
  • 批准年份:
    2021
  • 资助金额:
    12.0 万元
  • 项目类别:
    数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
  • 批准号:
    61671064
  • 批准年份:
    2016
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目

相似海外基金

Function Theory of Several Complex Variables
多复变量函数论
  • 批准号:
    2247151
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Geometric Function Theory in Several Complex Variables
职业:多个复变量的几何函数论
  • 批准号:
    2045104
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Conference on Multivariable Operator Theory and Function Spaces in Several Variables
多变量算子理论与多变量函数空间会议
  • 批准号:
    2055013
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Function Theory of Several Complex Variables
多复变量函数论
  • 批准号:
    2000050
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Function Theory of Several Complex Variables
多复变量函数论
  • 批准号:
    1665412
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Function Theory of Several Complex Variables
多复变量函数论
  • 批准号:
    1363418
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Problems on the geometric function theory in several complex variables and complex geometry
几何函数论中的多复变数和复几何问题
  • 批准号:
    1300867
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Problems on the geometric function theory in several complex variables and complex geometry
几何函数论中的多复变数和复几何问题
  • 批准号:
    1412384
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Function theory in several complex variables and partial differential equations
多复变量和偏微分方程中的函数论
  • 批准号:
    1200652
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Function theory in several complex variables and partial differential equations
多复变量和偏微分方程中的函数论
  • 批准号:
    1265330
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了