Function Theory of Several Complex Variables
多复变量函数论
基本信息
- 批准号:2000050
- 负责人:
- 金额:$ 21.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-01 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project is about the understanding of complex-valued functions. Complex numbers and functions of complex variables have become, since the nineteenth century, indispensable tools in many areas of mathematics and its applications to other areas of science and engineering. The solutions of many problems in the applied sciences could ultimately depend on improvements in these complex analytic tools and in a deeper understanding of their basic properties. This project provides research training for graduate students, and the principal investigator will continue mentoring postdocs and organizing conferences on several complex variables and complex geometry, bringing together mathematicians to discuss their research and teaching.The principal investigator will work on several fundamental problems in complex analysis of several variables that are closely related to research in differential geometry, subelliptic analysis and classical dynamics. More specifically, he plans to continue his research on the equivalence problem and the rigidity problem in several complex variables, to carry further his work on the complex structure of the holomorphic hull of a real submanifold in a complex space, and to investigate various boundary CR invariants, including the famous Bloom conjecture in any dimension.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个项目是关于对复值函数的理解。自世纪以来,复数和复变函数已经成为数学许多领域不可或缺的工具,并将其应用于其他科学和工程领域。应用科学中许多问题的解决最终可能取决于这些复杂分析工具的改进以及对其基本性质的更深入理解。该项目为研究生提供研究培训,首席研究员将继续指导博士后并组织关于多复变和复几何的会议,将数学家聚集在一起讨论他们的研究和教学。首席研究员将致力于与微分几何研究密切相关的多复变分析中的几个基本问题,亚椭圆分析和经典动力学。更具体地说,他计划继续他的研究等价问题和刚性问题在几个复变量,进一步进行他的工作的复杂结构的全纯船体的一个真实的子流形在一个复杂的空间,并调查各种边界CR不变量,包括著名的布卢姆猜想在任何维度。这个奖项反映了NSF的法定使命,并已被认为值得支持,使用基金会的知识价值和更广泛的影响审查标准进行评估。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Complex geodesics and complex Monge–Ampère equations with boundary singularity
具有边界奇点的复杂测地线和复杂蒙日安培方程
- DOI:10.1007/s00208-020-02111-4
- 发表时间:2022
- 期刊:
- 影响因子:1.4
- 作者:Huang, Xiaojun;Wang, Xieping
- 通讯作者:Wang, Xieping
Regular multi-types and the Bloom conjecture
正则多型和布卢姆猜想
- DOI:10.1016/j.matpur.2020.05.007
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Huang, Xiaojun;Yin, Wanke
- 通讯作者:Yin, Wanke
Boundary characterization of holomorphic isometric embeddings between indefinite hyperbolic spaces
不定双曲空间之间全纯等距嵌入的边界表征
- DOI:10.1016/j.aim.2020.107388
- 发表时间:2020-11
- 期刊:
- 影响因子:1.7
- 作者:Xiaojun Huang;Jin Lu;Xiaomin Tang;Ming Xiao
- 通讯作者:Ming Xiao
Revisiting a Non-Degeneracy Property for Extremal Mappings
重新审视极值映射的非简并性质
- DOI:10.1007/s10473-021-0602-6
- 发表时间:2021
- 期刊:
- 影响因子:1
- 作者:Huang, Xiaojun
- 通讯作者:Huang, Xiaojun
Bergman–Einstein metrics, a generalization of Kerner’s theorem and Stein spaces with spherical boundaries
- DOI:10.1515/crelle-2020-0012
- 发表时间:2020-05
- 期刊:
- 影响因子:0
- 作者:Xiaojun Huang;Ming Xiao
- 通讯作者:Xiaojun Huang;Ming Xiao
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiaojun Huang其他文献
Overt gastrointestinal bleeding following haploidentical haematopoietic stem cell transplantation: incidence, outcomes and predictive models
单倍相合造血干细胞移植后明显胃肠道出血:发生率、结果和预测模型
- DOI:
10.1038/s41409-020-01187-5 - 发表时间:
2021-01 - 期刊:
- 影响因子:0
- 作者:
Xueyan Sun;Yan Su;Xiao Liu;Yuanyuan Zhang;Yun He;Wei Han;Qi Chen;Huan Chen;Yu Wang;Yifei Cheng;Fengqi Liu;Fengrong Wang;Yao Chen;Gaochao Zhang;Xiaodong Mo;Haixia Fu;Yuhong Chen;Jingzhi Wang;Xiaolu Zhu;Lanping Xu;Kaiyan Liu;Xiaojun Huang;Xiaohui Zhang - 通讯作者:
Xiaohui Zhang
The cell composition of infused donor lymphocyte has different impact in different types of allogeneic hematopoietic stem cell transplantation
输注供体淋巴细胞的细胞组成对不同类型的异基因造血干细胞移植有不同的影响
- DOI:
10.1111/ctr.12404 - 发表时间:
2014-08 - 期刊:
- 影响因子:2.1
- 作者:
Xiaosu Zhao;Yu Wang;Chenhua Yan;Jingzhi Wang;Xiaohui Zhang;Lanping Xu;Kaiyan Liu;Xiaojun Huang - 通讯作者:
Xiaojun Huang
Normality of meromorphic functions with multiple zeros and shared values
- DOI:
10.1016/s0022-247x(02)00532-2 - 发表时间:
2003 - 期刊:
- 影响因子:1.3
- 作者:
Xiaojun Huang - 通讯作者:
Xiaojun Huang
Model-Based Identification of Larix sibirica Ledeb. Damage Caused by Erannis jacobsoni Djak. Based on UAV Multispectral Features and Machine Learning
基于模型的西伯利亚落叶松 Ledeb 识别。
- DOI:
10.3390/f13122104 - 发表时间:
2022-12 - 期刊:
- 影响因子:2.9
- 作者:
Lei Ma;Xiaojun Huang;Quansheng Hai;Bao Gang;Siqin Tong;Yuhai Bao;Ganbat Dashzebeg;Tsagaantsooj Nanzad;Altanchimeg Dorjsuren;Davaadorj Enkhnasan;Mungunkhuyag Ariunaa - 通讯作者:
Mungunkhuyag Ariunaa
Arginine-Selective Chemical Labeling Approach for Identification and Enrichment of Reactive Arginine Residues in Proteins
用于鉴定和富集蛋白质中反应性精氨酸残基的精氨酸选择性化学标记方法
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:4.1
- 作者:
Maheshika S K Wanigasekara;Xiaojun Huang;J. K. Chakrabarty;A. Bugarin;S. Chowdhury - 通讯作者:
S. Chowdhury
Xiaojun Huang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiaojun Huang', 18)}}的其他基金
Function Theory of Several Complex Variables
多复变量函数论
- 批准号:
2247151 - 财政年份:2023
- 资助金额:
$ 21.2万 - 项目类别:
Standard Grant
Function Theory of Several Complex Variables
多复变量函数论
- 批准号:
1665412 - 财政年份:2017
- 资助金额:
$ 21.2万 - 项目类别:
Continuing Grant
Function Theory of Several Complex Variables
多复变量函数论
- 批准号:
1363418 - 财政年份:2014
- 资助金额:
$ 21.2万 - 项目类别:
Continuing Grant
Function Theory of Several Complex Variables
多复变量函数论
- 批准号:
1101481 - 财政年份:2011
- 资助金额:
$ 21.2万 - 项目类别:
Continuing Grant
International Conference on Several Complex Variables, Complex Geometry and Partial Differential Equations
多复变量、复几何与偏微分方程国际会议
- 批准号:
0901662 - 财政年份:2009
- 资助金额:
$ 21.2万 - 项目类别:
Standard Grant
Function Theory of Several Complex Variables
多复变量函数论
- 批准号:
0801056 - 财政年份:2008
- 资助金额:
$ 21.2万 - 项目类别:
Continuing Grant
Function Theory of Several Complex Variables
多复变量函数论
- 批准号:
0500626 - 财政年份:2005
- 资助金额:
$ 21.2万 - 项目类别:
Standard Grant
Function Theory in Several Complex Variables
多复变量的函数论
- 批准号:
0200689 - 财政年份:2002
- 资助金额:
$ 21.2万 - 项目类别:
Continuing Grant
Function Theory in Several Complex Variables
多复变量的函数论
- 批准号:
9970439 - 财政年份:1999
- 资助金额:
$ 21.2万 - 项目类别:
Standard Grant
Mathematical Sciences Postdoctoral Research Fellowships
数学科学博士后研究奖学金
- 批准号:
9627423 - 财政年份:1996
- 资助金额:
$ 21.2万 - 项目类别:
Fellowship Award
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
- 批准号:12247163
- 批准年份:2022
- 资助金额:18.00 万元
- 项目类别:专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
- 批准号:12126512
- 批准年份:2021
- 资助金额:12.0 万元
- 项目类别:数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
- 批准号:61671064
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
Function Theory of Several Complex Variables
多复变量函数论
- 批准号:
2247151 - 财政年份:2023
- 资助金额:
$ 21.2万 - 项目类别:
Standard Grant
CAREER: Geometric Function Theory in Several Complex Variables
职业:多个复变量的几何函数论
- 批准号:
2045104 - 财政年份:2021
- 资助金额:
$ 21.2万 - 项目类别:
Continuing Grant
Conference on Multivariable Operator Theory and Function Spaces in Several Variables
多变量算子理论与多变量函数空间会议
- 批准号:
2055013 - 财政年份:2021
- 资助金额:
$ 21.2万 - 项目类别:
Standard Grant
Function Theory of Several Complex Variables
多复变量函数论
- 批准号:
1665412 - 财政年份:2017
- 资助金额:
$ 21.2万 - 项目类别:
Continuing Grant
Function Theory of Several Complex Variables
多复变量函数论
- 批准号:
1363418 - 财政年份:2014
- 资助金额:
$ 21.2万 - 项目类别:
Continuing Grant
Problems on the geometric function theory in several complex variables and complex geometry
几何函数论中的多复变数和复几何问题
- 批准号:
1300867 - 财政年份:2013
- 资助金额:
$ 21.2万 - 项目类别:
Continuing Grant
Problems on the geometric function theory in several complex variables and complex geometry
几何函数论中的多复变数和复几何问题
- 批准号:
1412384 - 财政年份:2013
- 资助金额:
$ 21.2万 - 项目类别:
Continuing Grant
Function theory in several complex variables and partial differential equations
多复变量和偏微分方程中的函数论
- 批准号:
1200652 - 财政年份:2012
- 资助金额:
$ 21.2万 - 项目类别:
Standard Grant
Function theory in several complex variables and partial differential equations
多复变量和偏微分方程中的函数论
- 批准号:
1265330 - 财政年份:2012
- 资助金额:
$ 21.2万 - 项目类别:
Standard Grant
Function Theory of Several Complex Variables
多复变量函数论
- 批准号:
1101481 - 财政年份:2011
- 资助金额:
$ 21.2万 - 项目类别:
Continuing Grant