Dynamics of Nonlinear Differential Equations
非线性微分方程动力学
基本信息
- 批准号:0500674
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-08-01 至 2009-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DYNAMICS OF NONLINEAR DIFFERENTIAL EQUATIONS (DMS-0500674) John Mallet-Paret Division of Applied Mathematics Brown UniversityWe propose to study fundamental qualitative properties ofvarious classes of nonlinear dynamical systems, in particular asthey arise from differential and difference equations. The systemsto be considered include those from ordinary and partial differentialequations, systems of lattice differential equations (that is,spatially discrete systems), differential delay equations, andmax-plus operators. Issues such as the existence of equilibria andtheir stability, spontaneous formation of spatial patterns and spatialchaos, the existence and qualitative properties of traveling fronts,and the appearance of spontaneous temporal oscillations will be studiedfor these problems. In addition to the established techniques (boththeoretical and numerical) from differential equations and dynamicalsystems, a significant portion of the proposed research involves thedevelopment and implementation of new tools and techniques with whichto study these systems. Among the techniques to be employed are thoseinvolving singular perturbations, invariant manifolds, exponentialdichotomies, and topological methods.We are developing new mathematical techniques for analyzing andunderstanding differential equations and difference equations. Suchequations typically arise as models in numerous areas of science. Inbroad terms, these types of mathematical systems model time-dependentor evolutionary behavior, as it occurs in a wide range of scientificareas, including biology, chemistry, electrical circuit theory, imageprocessing, and material science. Although this is a very broad scopeof inquiry, the specific problems to be studied exhibit features incommon -- spontaneous formation of patterns, self-sustained oscillations,regulation by internal feedback (often with time delays) -- which can beanalyzed with some of the basic tools of dynamical systems theory. It isexpected the resulting mathematical advances arising from these studieswill increase the knowledge of, and will provide insight into both theabstract theory of dynamical systems, as well as the scientific areas ofinquiry.
应用数学布朗大学的John Mallet-Paret分部我们建议研究各种类型的非线性动力系统的基本定性性质,特别是当它们来自微分方程组和差分方程组时。要考虑的系统包括来自常微分方程组和偏微分方程组、格点微分方程组(即空间离散系统)、微分时滞方程和极大值加算子的系统。这些问题包括平衡点的存在性及其稳定性,空间格局和空间混沌的自发形成,旅行锋面的存在和定性,以及自发时间振荡的出现等问题。除了已有的微分方程式和动力学系统的理论和数值技术外,拟议研究的很大一部分还涉及开发和实施新的工具和技术来研究这些系统。所使用的方法包括奇异摄动、不变流形、指数二分法和拓扑法。我们正在发展分析和理解微分方程和差分方程的新的数学方法。成功方程通常作为模型出现在许多科学领域。从广义上讲,这些类型的数学系统模拟了依赖时间的或进化行为,因为它发生在广泛的科学领域,包括生物、化学、电路理论、图像处理和材料科学。虽然这是一个非常广泛的研究范围,但要研究的具体问题表现出共同的特征--自发形成的模式、自我维持的振荡、内部反馈的调节(通常具有时滞)--这些都可以用动力系统理论的一些基本工具来分析。预计这些研究所产生的数学进步将增加对动力系统抽象理论的了解,并提供对科学研究领域的洞察。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Mallet-Paret其他文献
Intricate Structure of the Analyticity Set for Solutions of a Class of Integral Equations
- DOI:
10.1007/s10884-019-09746-1 - 发表时间:
2019-04-15 - 期刊:
- 影响因子:1.300
- 作者:
John Mallet-Paret;Roger D. Nussbaum - 通讯作者:
Roger D. Nussbaum
Obituary of Jack K. Hale
- DOI:
10.1007/s10884-010-9174-1 - 发表时间:
2010-06-23 - 期刊:
- 影响因子:1.300
- 作者:
Shui-Nee Chow;John Mallet-Paret - 通讯作者:
John Mallet-Paret
Modeling reflex asymmetries with implicit delay differential equations
- DOI:
10.1006/s0092-8240(98)90000-3 - 发表时间:
- 期刊:
- 影响因子:2.200
- 作者:
Fatihcan M. Atay;John Mallet-Paret - 通讯作者:
John Mallet-Paret
Asymptotic fixed point theory and the beer barrel theorem
- DOI:
10.1007/s11784-008-0095-0 - 发表时间:
2008-12-05 - 期刊:
- 影响因子:1.100
- 作者:
John Mallet-Paret;Roger D. Nussbaum - 通讯作者:
Roger D. Nussbaum
Differential Systems with Feedback: Time Discretizations and Lyapunov Functions
- DOI:
10.1023/b:jody.0000009750.14308.09 - 发表时间:
2003-07-01 - 期刊:
- 影响因子:1.300
- 作者:
John Mallet-Paret;George R. Sell - 通讯作者:
George R. Sell
John Mallet-Paret的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John Mallet-Paret', 18)}}的其他基金
Dynamics of Nonlinear Differential Equations
非线性微分方程动力学
- 批准号:
0200178 - 财政年份:2002
- 资助金额:
-- - 项目类别:
Continuing Grant
Dynamics of Nonlinear Differential Equations
非线性微分方程动力学
- 批准号:
9970319 - 财政年份:1999
- 资助金额:
-- - 项目类别:
Continuing Grant
Dynamics of Nonlinear Differential Equations
非线性微分方程动力学
- 批准号:
9706050 - 财政年份:1997
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Nonlinear Dynamical Systems
数学科学:非线性动力系统
- 批准号:
9623093 - 财政年份:1996
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Nonlinear Dynamical Systems
数学科学:非线性动力系统
- 批准号:
9310328 - 财政年份:1993
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Sciences: Nonlinear Dynamical Systems
数学科学:非线性动力系统
- 批准号:
9014087 - 财政年份:1990
- 资助金额:
-- - 项目类别:
Continuing Grant
相似海外基金
Global Dynamics of Delay Differential Systems Modelling Nonlinear Feedbacks in Spatiotemporally Varying Environments
时空变化环境中非线性反馈建模的时滞微分系统的全局动力学
- 批准号:
RGPIN-2019-06698 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: Nonlinear Dynamics and Spectral Analysis in Dispersive Partial Differential Equations
合作研究:色散偏微分方程中的非线性动力学和谱分析
- 批准号:
2055130 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant
Global Dynamics of Delay Differential Systems Modelling Nonlinear Feedbacks in Spatiotemporally Varying Environments
时空变化环境中非线性反馈建模的时滞微分系统的全局动力学
- 批准号:
RGPIN-2019-06698 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Analysis of Nonlinear Partial Differential Equations in Free Boundary Fluid Dynamics, Mathematical Biology, and Kinetic Theory
自由边界流体动力学、数学生物学和运动理论中的非线性偏微分方程分析
- 批准号:
2055271 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Nonlinear Dynamics and Spectral Analysis in Dispersive Partial Differential Equations
合作研究:色散偏微分方程中的非线性动力学和谱分析
- 批准号:
2055072 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant
Global Dynamics of Delay Differential Systems Modelling Nonlinear Feedbacks in Spatiotemporally Varying Environments
时空变化环境中非线性反馈建模的时滞微分系统的全局动力学
- 批准号:
RGPIN-2019-06698 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
CAREER: Dynamics of Nonlinear Dispersive Partial Differential Equations
职业:非线性色散偏微分方程的动力学
- 批准号:
1945615 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Continuing Grant
Well-posedness and global dynamics of solutions to nonlinear partial differential equations
非线性偏微分方程解的适定性和全局动力学
- 批准号:
19K14581 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Global Dynamics of Delay Differential Systems Modelling Nonlinear Feedbacks in Spatiotemporally Varying Environments
时空变化环境中非线性反馈建模的时滞微分系统的全局动力学
- 批准号:
RGPIN-2019-06698 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: Dynamics of Nonlinear Partial Differential Equations: Integrating Deterministic and Probabilistic Methods
合作研究:非线性偏微分方程的动力学:集成确定性和概率方法
- 批准号:
1800852 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Continuing Grant