Geometric Harmonic Analysis
几何调和分析
基本信息
- 批准号:0501300
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-07-01 至 2009-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Harmonic analysis on sets is an area that has been under intensive developmentsince the 1980's. The first results concerned the behavior of singular integrals on sets in terms of the geometry of the sets. The model operator, and impetus to the theory, was the Cauchy integral with the model geometric setting being a Lipschitz curve. This theory has witnessed an explosive growth in terms of understanding the relation between L2 estimates in terms of the multiscale geometry of the underlying set. One of the realizations of the 1990's was that there is an L2 theory of geometry in terms of so-called Beta numbers, and that there is a "dictionary" that translates theorems on geometry of sets into theorems on wavelets, and vice versa. While the theory of Beta numbers also gave a good understanding of the multiscale structure of e.g. a data set, it only provides a certain framework for the understanding of the geometry, and does not encompass a theory analogous to Fourier series or the study of heat flow. It is the development of such a theory, along with its relations to the already understood multiscale aspects, that is now required to provide a deeper understanding of harmonic analysis on sets. For example the problem of building local coordinates that capture most of the statistical behavior of (mostly) lower dimensional subsets has not been well developed mathematically, though many proposed methods have been studied. We propose to relate the top down methods (e.g. Beta Numbers and corresponding geometry) to bottom up methods of diffusion geometries. This new method of studying harmonic analysis on sets is based on the use of certain eigenfunctions related to the set. These eigenfunctions, coming from naturally defined matrices, allow the introduction of "local coordinates" on the set by picking the n largest eigenvalues, and using the corresponding n eigenfunctions as coordinates. The method proposed has a close relation to the theory of so-called prolate functions, as the resulting eigenfunctions have similar properties. This is in sharp contrast to the method of Coifman, Jones, and Semmes for defining Haar type L2 frames on sets resembling Lipschitz curves. The method of the proposal gives different functions with which one can naturally define local coordinates and study (approximate and correctly defined) heat flow on sets. Professors Jones and Coifman propose to study these methods and develop a theory that can be combined with previous results to relate top down behavior to bottom up behavior. This is done from the point of view of computational efficiency and the development of fast algorithms. They also propose to study the various geometrical descriptions to provide new methods of attacking older problems in harmonic analysis. In doing so, they aim to break new ground and broaden the applicability of other earlier methods.
集合上的调和分析是80年代以来得到广泛发展的一个领域。第一个结果涉及的行为奇异积分集的几何集合。该模型的运营商,并推动理论,是柯西积分与模型的几何设置是一个Lipschitz曲线。这个理论已经见证了爆炸性的增长,在理解L2估计之间的关系,在多尺度几何的基础上设置。20世纪90年代的认识之一是,存在一种以所谓的Beta数表示的L2几何理论,并且存在一本“词典”,可以将集合几何定理转化为小波定理,反之亦然。虽然贝塔数理论也很好地理解了数据集的多尺度结构,但它只为理解几何提供了一定的框架,并不包含类似于傅立叶级数或热流研究的理论。正是这样一个理论的发展,沿着它与已经理解的多尺度方面的关系,现在需要提供一个更深入的理解调和分析集。例如,建立局部坐标的问题,捕捉(大多数)低维子集的大部分统计行为还没有得到很好的数学发展,虽然许多建议的方法已经研究。我们建议将自上而下的方法(例如Beta数和相应的几何)与自下而上的扩散几何方法联系起来。 这种研究集合上调和分析的新方法是基于使用与集合有关的某些本征函数。这些本征函数来自自然定义的矩阵,允许通过挑选n个最大的本征值并使用相应的n个本征函数作为坐标来在集合上引入“局部坐标”。所提出的方法与所谓的长轴函数理论有密切关系,因为由此产生的本征函数具有类似的性质。这与Coifman、Jones和Semmes在类似Lipschitz曲线的集合上定义Haar型L2框架的方法形成鲜明对比。该建议的方法给出了不同的功能,人们可以自然地定义局部坐标和研究(近似和正确定义)热流集。琼斯和科夫曼教授建议研究这些方法,并开发一种理论,可以与以前的结果相结合,将自上而下的行为与自下而上的行为联系起来。这是从计算效率和快速算法的发展的角度来完成的。他们还建议研究各种几何描述,以提供新的方法来解决调和分析中的老问题。这样做的目的是开辟新天地,扩大其他早期方法的适用性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ronald Coifman其他文献
Local cosine transform — a method for the reduction of the blocking effect in JPEG
- DOI:
10.1007/bf01248401 - 发表时间:
1993-03-01 - 期刊:
- 影响因子:1.500
- 作者:
Gil Aharoni;Amir Averbuch;Ronald Coifman;Moshe Israeli - 通讯作者:
Moshe Israeli
TOWARD IDENTIFYING PERSONALIZED PROGNOSIS IN HYPERTENSION: VARIATION IN EARLY RESPONSES IN THE ANTIHYPERTENSIVE AND LIPID-LOWERING TREATMENT TO PREVENT HEART ATTACK TRIAL (ALLHAT)
- DOI:
10.1016/s0735-1097(17)35151-3 - 发表时间:
2017-03-21 - 期刊:
- 影响因子:
- 作者:
Sanket Shishir Dhruva;Chenxi Huang;Erica Spatz;Andreas Coppi;Frederick Warner;Shu-Xia Li;Haiqun Lin;Xiao Xu;Curt Furberg;Barry Davis;Sara Pressel;Ronald Coifman;Harlan Krumholz - 通讯作者:
Harlan Krumholz
Ronald Coifman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ronald Coifman', 18)}}的其他基金
CDS&E/Collaborative Research: The Integration of Data-Mining with Multiscale Engineering Computations
CDS
- 批准号:
1309858 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Tools for Non-invasive Spectroscopic Monitoring of Blood Chemistry
用于血液化学无创光谱监测的数学工具
- 批准号:
0139914 - 财政年份:2002
- 资助金额:
-- - 项目类别:
Standard Grant
Network Traffic Analysis and Multiresolution Schemes for Homogenization
网络流量分析和同质化多分辨率方案
- 批准号:
9705665 - 财政年份:1997
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Wavelet Analysis: Numerical Algorithms and Turbulence
数学科学:小波分析:数值算法和湍流
- 批准号:
9012751 - 财政年份:1990
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Sciences: Conference on Banach Algebras and Several Complex Variables; New Haven, Connecticut; June 21-24, 1983
数学科学:巴拿赫代数和几个复变量会议;
- 批准号:
8217128 - 财政年份:1983
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Infinite Dimensional Hamiltonian Systems and Lie Algebra Representations
数学科学:无限维哈密顿系统和李代数表示
- 批准号:
8301124 - 财政年份:1983
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Nonlinear Evolutions and Inverse Problems
数学科学:非线性演化和反问题
- 批准号:
8300568 - 财政年份:1983
- 资助金额:
-- - 项目类别:
Standard Grant
Harmonic Analysis on Lie Groups and Spaces of Homogeneous Type
李群与齐次型空间的调和分析
- 批准号:
7903122 - 财政年份:1979
- 资助金额:
-- - 项目类别:
Continuing Grant
Classical Harmonic Analysis on Lie Groups, Homogeneous Spaces and P -Adic Fields
李群、齐次空间和 P 进场的经典调和分析
- 批准号:
7502411 - 财政年份:1975
- 资助金额:
-- - 项目类别:
Standard Grant
相似国自然基金
算子方法在Harmonic数恒等式中的应用
- 批准号:11201241
- 批准年份:2012
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
Ricci-Harmonic流的长时间存在性
- 批准号:11126190
- 批准年份:2011
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
相似海外基金
Conference: Geometric Measure Theory, Harmonic Analysis, and Partial Differential Equations: Recent Advances
会议:几何测度理论、调和分析和偏微分方程:最新进展
- 批准号:
2402028 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Geometric Harmonic Analysis: Advances in Radon-like Transforms and Related Topics
几何调和分析:类氡变换及相关主题的进展
- 批准号:
2348384 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
International Conference on Harmonic Analysis, Partial Differential Equations, and Geometric Measure Theory
调和分析、偏微分方程和几何测度理论国际会议
- 批准号:
2247067 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Harmonic analysis, additive combinatorics and geometric measure theory
调和分析、加性组合学和几何测度论
- 批准号:
RGPIN-2017-03755 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Harmonic analysis, additive combinatorics and geometric measure theory
调和分析、加性组合学和几何测度论
- 批准号:
RGPIN-2017-03755 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
CAREER: Fractional Partial Differential Equations, Harmonic Analysis, and Their Applications in the Geometric Calculus of Variations and Quantitative Topology
职业:分数阶偏微分方程、调和分析及其在变分几何微积分和定量拓扑中的应用
- 批准号:
2044898 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Continuing Grant
Geometric Harmonic Analysis: Affine and Frobenius-Hörmander Geometry
几何调和分析:仿射几何和 Frobenius-Hörmander 几何
- 批准号:
2054602 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant
Harmonic analysis, additive combinatorics and geometric measure theory
调和分析、加法组合学和几何测度论
- 批准号:
RGPIN-2017-03755 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
New development on higher order elliptic and parabolic PDEs -- cooperation between harmonic analysis and geometric analysis
高阶椭圆偏微分方程和抛物线偏微分方程的新进展——调和分析与几何分析的结合
- 批准号:
20KK0057 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research (B))
Collaborative Research: Geometric Harmonic Analysis in Learning and Inference: Theory and Applications
合作研究:学习和推理中的几何调和分析:理论与应用
- 批准号:
1854831 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Continuing Grant